MySQL企业版数据库_MySQL
MySQL是开源方面的领军企业,同时也是全球成长最快的开源数据库开发商之一。作为全球最流行的开源数据库软件,MySQL企业版是公司的旗舰产品,包括经过产品测试的软件、主动监测工具和金牌支持服务。许多全球最大、增长最快的企业和机构,包括行业领导者如雅虎、阿尔卡特-朗讯、谷歌、诺基亚、YouTube和Booking.com均采用MySQL产品,省时、省钱地创建大量网站、关键业务系统和打包软件。MySQL的开源数据库广泛部署于所有主要的操作系统,硬件用户、所涉地区、应用行业、应用类型极其广泛。MySQL的高性能开源数据库软件已经被下载和发行超过1亿套,并且正以每天下载5万套的数量增长。
MySQL开源数据库是LAMP架构(由Linux、Apache、MySQL和PHP/Perl组成的、通常被看作是互联网基础)中的“M”。来自MySQL的数据库,还有OpenSolaris和GlassFish,加上Sun的Java平台和NetBeans社区,将为转移应用到Web的广大客户开创一个强大的Web应用平台。
MySQL Enterprise Server软件是最可靠、最安全、更新版本的MySQL企业级服务器数据库,它能够高性价比地提供电子商务、联机事务处理(OLTP)、千兆规模的数据仓库应用等。它是一个安全的事务处理、适应ACID的数据库,能提供完整的提交、反转、崩溃恢复和行级锁定功能。MySQL数据库因其易用性、可扩展性和高性能等特点,成为全球最流行的开源数据库。
MySQL Enterprise Server 5.0提供了新的企业级产品功能,其中包括:
ACID事务处理:用以建立可靠安全的关键应用
存储过程:可以提高开发人员的工作效率
触发器:使用户能在数据库层面完成复杂的商业逻辑
视图: 确保敏感数据不被窃取
信息计划:为查询元数据提供快速的途径
分布式处理:通过它可以支持跨多个数据库的复杂事务处理
可插拔存储引擎架构:为数据库设计实施提供极大的灵活性
Archive存储引擎:提供了历史数据和审计数据的管理平台
Federated存储引擎:可以将多个不同服务器上的数据建立到一个统一的逻辑数据库
MySQL还提供了全套数据库驱动和绘图工具,用以帮助开发者和数据库管理员建立和管理其MySQL应用,如下:
(1)MySQL驱动
MySQL Native C Library
MySQL Drivers for ODBC, JDBC, .NET
Community Drivers for PHP, Perl, Python, Ruby, etc
MySQL Connector/MXJ for deployment as a JMX MBean
(2)MySQL图形工具
MySQL Workbench
MySQL Query Browser
MySQL Administrator
MySQL Migration Toolkit

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

L'annotation de texte est le travail d'étiquettes ou de balises correspondant à un contenu spécifique dans le texte. Son objectif principal est d’apporter des informations complémentaires au texte pour une analyse et un traitement plus approfondis, notamment dans le domaine de l’intelligence artificielle. L'annotation de texte est cruciale pour les tâches d'apprentissage automatique supervisées dans les applications d'intelligence artificielle. Il est utilisé pour entraîner des modèles d'IA afin de mieux comprendre les informations textuelles en langage naturel et d'améliorer les performances de tâches telles que la classification de texte, l'analyse des sentiments et la traduction linguistique. Grâce à l'annotation de texte, nous pouvons apprendre aux modèles d'IA à reconnaître les entités dans le texte, à comprendre le contexte et à faire des prédictions précises lorsque de nouvelles données similaires apparaissent. Cet article recommande principalement de meilleurs outils d'annotation de texte open source. 1.LabelStudiohttps://github.com/Hu

La technologie de détection et de reconnaissance des visages est déjà une technologie relativement mature et largement utilisée. Actuellement, le langage d'application Internet le plus utilisé est JS. La mise en œuvre de la détection et de la reconnaissance faciale sur le front-end Web présente des avantages et des inconvénients par rapport à la reconnaissance faciale back-end. Les avantages incluent la réduction de l'interaction réseau et de la reconnaissance en temps réel, ce qui réduit considérablement le temps d'attente des utilisateurs et améliore l'expérience utilisateur. Les inconvénients sont les suivants : il est limité par la taille du modèle et la précision est également limitée ; Comment utiliser js pour implémenter la détection de visage sur le web ? Afin de mettre en œuvre la reconnaissance faciale sur le Web, vous devez être familier avec les langages et technologies de programmation associés, tels que JavaScript, HTML, CSS, WebRTC, etc. Dans le même temps, vous devez également maîtriser les technologies pertinentes de vision par ordinateur et d’intelligence artificielle. Il convient de noter qu'en raison de la conception du côté Web

Permettez-moi de vous présenter le dernier projet open source AIGC-AnimagineXL3.1. Ce projet est la dernière itération du modèle texte-image sur le thème de l'anime, visant à offrir aux utilisateurs une expérience de génération d'images d'anime plus optimisée et plus puissante. Dans AnimagineXL3.1, l'équipe de développement s'est concentrée sur l'optimisation de plusieurs aspects clés pour garantir que le modèle atteigne de nouveaux sommets en termes de performances et de fonctionnalités. Premièrement, ils ont élargi les données d’entraînement pour inclure non seulement les données des personnages du jeu des versions précédentes, mais également les données de nombreuses autres séries animées bien connues dans l’ensemble d’entraînement. Cette décision enrichit la base de connaissances du modèle, lui permettant de mieux comprendre les différents styles et personnages d'anime. AnimagineXL3.1 introduit un nouvel ensemble de balises et d'esthétiques spéciales

Nouveau SOTA pour des capacités de compréhension de documents multimodaux ! L'équipe Alibaba mPLUG a publié le dernier travail open source mPLUG-DocOwl1.5, qui propose une série de solutions pour relever les quatre défis majeurs que sont la reconnaissance de texte d'image haute résolution, la compréhension générale de la structure des documents, le suivi des instructions et l'introduction de connaissances externes. Sans plus tarder, examinons d’abord les effets. Reconnaissance et conversion en un clic de graphiques aux structures complexes au format Markdown : Des graphiques de différents styles sont disponibles : Une reconnaissance et un positionnement de texte plus détaillés peuvent également être facilement traités : Des explications détaillées sur la compréhension du document peuvent également être données : Vous savez, « Compréhension du document " est actuellement un scénario important pour la mise en œuvre de grands modèles linguistiques. Il existe de nombreux produits sur le marché pour aider à la lecture de documents. Certains d'entre eux utilisent principalement des systèmes OCR pour la reconnaissance de texte et coopèrent avec LLM pour le traitement de texte.

Adresse papier : https://arxiv.org/abs/2307.09283 Adresse code : https://github.com/THU-MIG/RepViTRepViT fonctionne bien dans l'architecture ViT mobile et présente des avantages significatifs. Ensuite, nous explorons les contributions de cette étude. Il est mentionné dans l'article que les ViT légers fonctionnent généralement mieux que les CNN légers sur les tâches visuelles, principalement en raison de leur module d'auto-attention multi-têtes (MSHA) qui permet au modèle d'apprendre des représentations globales. Cependant, les différences architecturales entre les ViT légers et les CNN légers n'ont pas été entièrement étudiées. Dans cette étude, les auteurs ont intégré des ViT légers dans le système efficace.

Le FP8 et la précision de quantification inférieure en virgule flottante ne sont plus le « brevet » du H100 ! Lao Huang voulait que tout le monde utilise INT8/INT4, et l'équipe Microsoft DeepSpeed a commencé à exécuter FP6 sur A100 sans le soutien officiel de NVIDIA. Les résultats des tests montrent que la quantification FP6 de la nouvelle méthode TC-FPx sur A100 est proche ou parfois plus rapide que celle de INT4, et a une précision supérieure à celle de cette dernière. En plus de cela, il existe également une prise en charge de bout en bout des grands modèles, qui ont été open source et intégrés dans des cadres d'inférence d'apprentissage profond tels que DeepSpeed. Ce résultat a également un effet immédiat sur l'accélération des grands modèles : dans ce cadre, en utilisant une seule carte pour exécuter Llama, le débit est 2,65 fois supérieur à celui des cartes doubles. un

Le développement des technologies d’intelligence artificielle (IA) bat son plein aujourd’hui et elles ont montré un grand potentiel et une grande influence dans divers domaines. Aujourd'hui, Dayao partagera avec vous 4 cadres de projets liés au modèle d'IA open source .NET LLM, dans l'espoir de vous fournir une référence. https://github.com/YSGStudyHards/DotNetGuide/blob/main/docs/DotNet/DotNetProjectPicks.mdSemanticKernelSemanticKernel est un kit de développement logiciel (SDK) open source conçu pour intégrer de grands modèles de langage (LLM) tels qu'OpenAI, Azure
