Maison > Périphériques technologiques > IA > Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

WBOY
Libérer: 2024-03-30 13:31:35
avant
881 Les gens l'ont consulté
Une photo + une vidéo peuvent donner vie à la photo !

Récemment, Champ, un travail de génération de vision humaine contrôlable publié conjointement par Alibaba, l'Université de Fudan et l'Université de Nanjing, est devenu populaire partout sur Internet. Ce modèle n'est open source que depuis 5 jours et a reçu 1 000 étoiles sur GitHub. Il est devenu très populaire sur Twitter, attirant un grand nombre de blogueurs pour créer de nouveaux projets, et le nombre total de vues a atteint 300 000.

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Actuellement, Champ a open source le code d'inférence et les poids, et les utilisateurs peuvent les télécharger et les utiliser directement depuis Github. La démo officielle Hugging Face a été lancée et le Champ-ComfyUI encapsulé est également promu simultanément. La page d'accueil de GitHub montre que l'équipe ouvrira prochainement le code de formation et les ensembles de données. Les partenaires intéressés peuvent continuer à prêter attention à la dynamique du projet. Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

  • Page d'accueil du projet : https://fudan-generative-vision.github.io/champ/

  • Lien papier : https://arxiv.org/abs/2403.14781

  • Lien Github : https ://github.com/fudan-generative-vision/champ

  • Hugging Face Link : https://huggingface.co/fudan-generative-ai/champ

Effet vidéo Champ sur des portraits du monde réel, ce qui permet à différents portraits de "copier" la même action, en prenant comme entrée la vidéo d'action du coin supérieur gauche.

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Bien que Champ ne soit formé qu'avec de vraies vidéos de corps humain, il a démontré une forte capacité de généralisation sur différents types d'images :

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Les photos en noir et blanc, les peintures à l'huile, les aquarelles et d'autres effets sont remarquables, et il fonctionne bien sur différents types d'images. Images réalistes générées par des modèles graphiques, y compris des personnages virtuels :

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Aperçu technique

Champ utilise un modèle avancé de récupération de maillage humain pour extraire le corps humain tridimensionnel paramétré correspondant du corps humain tridimensionnel paramétré correspondant. entrée vidéo du corps humain La séquence SMPL du modèle de maillage (Skinned Multi-Person Linear Model) restitue en outre la carte de profondeur correspondante, la carte normale, la posture humaine et la carte sémantique humaine, qui sont utilisées comme conditions de contrôle de mouvement correspondantes pour guider la génération vidéo et transférer des actions vers l'entrée Sur le portrait de référence, cela peut améliorer considérablement la qualité de la vidéo du mouvement humain, ainsi que la cohérence géométrique et de l'apparence.

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Pour différentes conditions de mouvement, Champ utilise un module de fusion de mouvement multicouche (MLMF), qui utilise le mécanisme d'auto-attention pour intégrer pleinement les caractéristiques entre différentes conditions afin d'obtenir un contrôle de mouvement plus raffiné. La figure suivante montre les résultats de visualisation de l'attention de ce module dans différentes conditions : la carte de profondeur se concentre sur les informations de contour géométrique de la forme humaine, la carte normale indique l'orientation du corps humain, la carte sémantique contrôle la correspondance d'apparence des différentes parties. du corps humain et du squelette de la posture humaine. Il se concentre uniquement sur les détails clés du visage et des mains.

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

D'un autre côté, Champ a découvert et résolu le problème de la migration de la forme du corps qui a été ignoré dans la génération de vidéos humaines. Les travaux antérieurs étaient soit basés sur le modèle du squelette humain, soit sur d'autres informations géométriques obtenues à partir de la vidéo d'entrée pour piloter le mouvement de la figure humaine. Cependant, ces méthodes n'ont pas réussi à dissocier le mouvement de la forme du corps humain, ce qui a généré le résultat. les résultats sont incompatibles avec le corps humain dans l’image de référence.

Par exemple, étant donné une grosse personne comme image de référence, le résultat de la comparaison est présenté dans la figure 7 ci-dessous :

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

On peut voir que dans les résultats générés par Animate Any et MagicAnimate, le gros ventre est lissé, même Le cadre a également un peu rétréci. Champ utilise les paramètres de forme du corps dans SMPL pour l'aligner sur la séquence SMPL qui pilote la vidéo dans une forme de corps paramétrée, obtenant ainsi la meilleure cohérence dans la forme du corps et l'action (avec PST dans l'image).

Résultats expérimentaux

Comme le montre le tableau 4 ci-dessous, comparé à d'autres travaux SOTA, Champ a un meilleur contrôle de mouvement et moins d'artefacts :

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Dans le même temps, Champ démontre également ses performances de généralisation supérieures et sa stabilité dans la correspondance d'apparence :

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouableChamp est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Dans l'ensemble de données TikTok Dance, Champ évalue l'effet de quantification de la génération d'images et de la génération de vidéos. Il y a eu des améliorations significatives dans plusieurs indicateurs d’évaluation, comme le montre le tableau 1 ci-dessous.

Champ est le premier open source : la vidéo du corps humain génère un nouveau SOTA, a gagné 1 000 étoiles en 5 jours et la démo est jouable

Pour plus de détails techniques et de résultats expérimentaux, veuillez vous référer à l'article et au code originaux de Champ. Vous pouvez également accéder à HuggingFace ou télécharger le code source officiel pour une expérience pratique.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:jiqizhixin.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal