


Six défis en matière de business intelligence que les équipes informatiques doivent relever
La Business Intelligence (BI) permet aux entreprises d'obtenir des informations à partir de grandes quantités de données. Mais pour y parvenir, il faudra surmonter un certain nombre de défis stratégiques et tactiques.
Actuellement, les organisations de tous types sont inondées de données provenant de diverses sources et sont submergées d'efforts pour donner un sens à tout cela. Par conséquent, une solide stratégie de business intelligence (BI) peut aider à organiser les processus et à garantir que les utilisateurs professionnels peuvent accéder aux informations commerciales et agir en conséquence. Grâce aux stratégies BI, diverses sources de données peuvent être intégrées pour fournir aux utilisateurs des informations précises et utiles. Les avantages d’une stratégie BI sont nombreux. Premièrement, cela aide les organisations à mieux comprendre leurs données commerciales et à fournir des informations approfondies. Deuxièmement, une stratégie BI peut également aider les organisations à gérer et analyser de grandes quantités de données, selon
Lisa Thee, responsable des bonnes données industrielles chez Launch Consulting Group, basé à Seattle : « D'ici 2025, on estime que nous générerons 4,63 téraoctets de données chaque jour. Pour les entreprises Pour rester connectées au marché, réagir et créer des produits qui connectent avec les consommateurs, il est important de tirer parti des informations générées par ces informations. Cette croissance du volume de données signifie que les entreprises doivent collecter, stocker et analyser les données plus efficacement pour obtenir des informations significatives. Dans le même temps, cela offre également la possibilité d’entrer en contact avec les consommateurs et de créer des produits adaptés à leurs besoins et préférences. Les informations générées par l’exploitation de ces informations peuvent aider les entreprises à prendre des décisions plus éclairées et à conserver un avantage concurrentiel sur un marché concurrentiel. Pour relever cet énorme défi en matière de données, les entreprises doivent investir dans des logiciels avancés de
Business Intelligence les aide à y parvenir en canalisant les bonnes données dans des rapports analytiques et des visualisations afin que les utilisateurs puissent prendre des décisions éclairées. Mais sans la bonne approche pour mettre en œuvre ces outils, les organisations doivent toujours maximiser leur valeur et atteindre leurs objectifs commerciaux.
Voici six défis courants en matière de business intelligence auxquels les entreprises sont confrontées et comment les services informatiques peuvent les relever.
1. Faible taux d'adoption par les utilisateurs
Les outils de business intelligence jouent un rôle important dans les entreprises. Il est essentiel d’obtenir l’adhésion de toutes les parties prenantes, car toute réticence initiale entraînera une faible adoption. Pour favoriser l’adoption d’outils de business intelligence, les points suivants sont essentiels : 1. Objectifs clairs : assurez-vous que les objectifs et les résultats attendus de l’outil de business intelligence sont clairement définis et communiqués. Cela aidera les parties prenantes à comprendre l'outil
« Le problème n°1 pour notre équipe de business intelligence est de parvenir à obtenir une solution. On croit que la business intelligence aidera à prendre des décisions véritablement basées sur les données. » Schellman Corporation est un cabinet de conseil spécialisé dans la sécurité de l'information, la confidentialité et la conformité. Leur équipe d'analystes commerciaux se consacre à fournir les solutions de business intelligence dont leurs clients ont besoin. La Business Intelligence est la capacité de transformer les données en informations et actions significatives susceptibles d'optimiser les opérations commerciales, d'augmenter l'efficacité et d'augmenter les profits. À l’ère numérique d’aujourd’hui, les données sont partout
Pour obtenir l’adhésion des employés, l’équipe de Stout a créé un tableau de bord de business intelligence pour leur montrer comment se connecter et interagir facilement avec les données et les intégrer de manière significative à la visualisation des données. Le tableau de bord fournit non seulement des mises à jour en temps réel des données clés, mais les présente également de manière intuitive qui permet aux membres de l'équipe de mieux comprendre et exploiter les données. De cette façon, les membres de l'équipe peuvent mieux comprendre la situation de l'entreprise, prendre des décisions rapidement et améliorer l'efficacité du travail.
Elle a déclaré : « Par exemple, une certaine partie prenante estime qu'une certaine gamme de produits est rentable. Je peux créer un tableau de bord. Cela permet aux utilisateurs pour voir l’intérêt d’adopter des outils de business intelligence.
2. Déterminez quelle méthode de fourniture de business intelligence vous convient le mieux
Il existe de nombreuses méthodes traditionnelles de gestion informatique pour fournir des rapports et des informations à partir de données. Mais en utilisant des outils de business intelligence en libre-service, ainsi que des tableaux de bord et des interfaces utilisateur plus intuitifs, les entreprises peuvent tirer une plus grande valeur commerciale de leurs données en rationalisant les processus en donnant aux responsables et autres membres du personnel non technique un meilleur accès aux rapports.
Cependant, il peut y avoir des obstacles à l'adoption d'une approche en libre-service, a déclaré Axel Goris, responsable mondial de l'analyse visuelle chez Novartis, un fabricant pharmaceutique multinational dont le siège est à Bâle, en Suisse. Par exemple, avoir trop d’accès entre plusieurs départements augmente les coûts et expose l’entreprise à des problèmes de sécurité des données. Vous souhaitez que votre équipe commerciale prenne des décisions en fonction des données qu’elle obtient et qu’elle ait l’autonomie nécessaire pour déterminer ce qui fonctionne le mieux ? Il est essentiel de disposer d’un contrôle centralisé et standardisé sur le déploiement des outils. Pour ce faire correctement, l’informatique doit bien gérer les données.
En raison de ces compromis, les entreprises doivent s'assurer de choisir l'approche de business intelligence qui convient le mieux à l'application métier en question.
Axel Goris a déclaré : « En plus des employés externes qui travaillent pour nous, nous avons plus de 100 000 employés, ce qui représente un groupe d'utilisateurs assez important. Un défi clé concerne l'organisation de la livraison, comment organiser la livraison, car les sociétés pharmaceutiques. sont une gouvernance très réglementée. »
Goris explique que les modèles de prestation de business intelligence gérés par l'informatique nécessitent beaucoup de travail et de processus qui ne sont pas adaptés à certaines parties de l'entreprise.
Goris a déclaré : « C'est parce qu'ils pensent que le jeu est trop complexe, qu'il y a trop de frais généraux, qu'ils veulent aller plus vite et être plus agiles, et si l'informatique est le lieu de livraison préféré, alors cela devient un goulot d'étranglement car notre Pas grand suffisamment pour fournir des services de livraison à tout le monde. »
Pour relever ce défi, Novartis a mis en œuvre deux méthodes de livraison : une approche gérée par l'informatique et une approche gérée par l'entreprise en libre-service.
"Avec Business Management Delivery, nous fournissons la plate-forme et les outils et permettons à l'entreprise de se développer seule selon certains paramètres, en utilisant ses fournisseurs préférés, ou en laissant l'équipe le faire elle-même, ce qui est très populaire", a-t-il ajouté. Say, tout se résume à décider « comment pouvons-nous servir tout le monde dans l'entreprise, ou permettre aux utilisateurs de Business Intelligence de se servir eux-mêmes de manière évolutive ?
3. Intégrer ou non les données ? à partir de diverses sources de données, sur site et dans le cloud (ce qui peut être un processus long et complexe), la nécessité de simplifier le processus de configuration augmente également. Mais beaucoup de gens ont trouvé d’autres solutions. Par exemple, Rick Gemereth, directeur de l'information de Lionel, un concepteur et importateur américain de trains jouets et de chemins de fer miniatures basé en Caroline du Nord, a déclaré que l'entreprise utilise l'ERP comme système d'enregistrement.
Il a déclaré : « Notre seule source de vérité est NetSuite, l'ensemble de notre ERP et de notre commerce électronique est basé sur NetSuite. L'un des avantages de cela est que nous n'avons pas à relever le défi d'essayer de combiner des données provenant de différentes sources. sources. » Cependant, ce qui fonctionne pour Lionel peut ne pas fonctionner ailleurs. Le défi est de trouver la solution la mieux adaptée à votre situation spécifique.
Par exemple, Stout explique comment résoudre le problème d'intégration de la gestion de la relation client (CRM) et des données financières.
Elle a déclaré : « De nombreux logiciels de business intelligence proviennent d'un entrepôt de données, où ils chargent toutes les tables de données qui constituent le backend de différents logiciels. Ou vous avez un outil de business intelligence comme celui que Schellman utilise Domo, il agit comme. un entrepôt de données. Vous pouvez vous connecter à ce logiciel et il les rassemblera dans un tableau. Ensuite, vous placerez tous ces tableaux au même endroit afin de pouvoir prendre les informations et les traiter. "
Gartner Exceptionnel. Jim Hare, vice-président et analyste chez IBM, a déclaré que certaines personnes pensent qu'elles doivent vider toutes les données cloisonnées des différents systèmes d'unités commerciales dans un lac de données.
Il a déclaré : "Mais ce qu'ils doivent vraiment faire, c'est repenser fondamentalement la façon de gérer et d'accéder aux données. Ce que Gartner a écrit, c'est le concept de structures de données."
Les structures de données sont définies comme un accès sans friction dans des environnements de données distribués. de partage de données conçu pour aider les entreprises à accéder, à intégrer et à gérer les données où qu'elles se trouvent, à l'aide de graphes de connaissances sémantiques, de gestion active des métadonnées et d'apprentissage automatique intégré. « Les structures de données permettent aux données de résider dans différents types de référentiels, soit dans le cloud, soit sur site », a déclaré Hare. « La clé est de pouvoir trouver des données pertinentes et de les connecter via un graphe de connaissances. La gestion des métadonnées est la clé de cela. ."
4. Les données ne doivent pas nécessairement être parfaites
La sagesse conventionnelle veut que les entreprises doivent utiliser des données de haute qualité pour recueillir les informations nécessaires afin de prendre les meilleures décisions commerciales. Mais Nicole Miara, directrice de la transformation numérique chez LKQ Europe Ltd., un distributeur de pièces détachées pour le marché automobile basé en Suisse, a déclaré que cette affirmation n'était pas tout à fait exacte.
Ce n’est pas parce que les données ne sont pas considérées comme de la plus haute qualité qu’elles n’ont pas de valeur.
En matière de prise de décision, le désir des entreprises de disposer de données parfaites peut ralentir leurs efforts car elles passent du temps à collecter autant de données que possible, à corriger des données incomplètes ou à corriger des formats. Miara a déclaré qu'il est difficile d'avoir des données parfaites, mais que les entreprises peuvent utiliser et analyser des données imparfaites et commencer à les transformer en informations commerciales.
« Il n’est pas nécessaire que les données soient parfaites pour commencer ce voyage. Il s’agit d’une approche étape par étape », a-t-elle ajouté. De plus, a-t-elle ajouté, les prédictions ne peuvent être faites sans une couche de données de base.
Par exemple, LKQ Europe tente d'appliquer ses données, y compris ses données de ventes, pour améliorer ses opérations de chaîne d'approvisionnement alors qu'elle subit une perturbation de 35 mois en raison de la pandémie de COVID-19. Cependant, l’entreprise ne dispose que d’environ 12 mois de données historiques sur les ventes.
Miara a déclaré : « Nous avons collecté des données de facturation mais nous n'avions aucune information supplémentaire sur les ventes. Nous avons donc utilisé des données de vente imparfaites et essayé de trouver des corrélations avec notre activité future. Mais nous voulions savoir si nous pouvions améliorer nos prévisions, en prévoyant la demande en fonction de ces données. "
5. Faire face à la résistance au changement
Nick Schwartz, directeur de l'information de HappyFeet International, une entreprise de revêtements de sol en vinyle et carrelage de luxe basée en Géorgie, a déclaré que la gestion du changement est le défi numéro un lors de la mise en œuvre de la business intelligence.
Schwartz a déclaré que dans l'industrie du revêtement de sol, de nombreuses personnes n'utilisent pas les nouvelles technologies. En fait, lorsque Schwartz a rejoint l'entreprise il y a trois ans, les vendeurs n'utilisaient même pas le courrier électronique dans leur travail quotidien car ils étaient plus habitués à faire des affaires par téléphone.
Il a dit : « Les gens sont habitués à faire les choses d’une certaine manière », et ils le font de cette façon depuis des années et ils vous demanderont pourquoi vous essayez une manière différente. Il faut donc rendre leur expérience la plus simple possible tout en allongeant le temps de formation. »
6. Cohérence de la gouvernance des données
Justin Gillespie, scientifique en chef des données chez le cabinet de conseil en recherche et conseil The Hackett Group, a déclaré que les entreprises doivent s'assurer qu'elles disposent de processus de gouvernance des données matures, y compris la gestion des données et autour des mesures clés et des indicateurs de performance clés. ( Gouvernance des KPI.
Il a déclaré : « Chaque entreprise avec laquelle j'ai été en contact a le même problème, les gens ne communiquent pas bien entre eux, donc avoir un ensemble de KPI et de mesures gérés de manière centralisée et certifiés par l'organisation est clé.
Gillespie estime que la gouvernance comprend également des outils et des plateformes standardisés. « Du point de vue des outils et de la technologie, c'est rarement à cause d'un manque d'outils, mais plutôt parce qu'il y a trop d'outils », a-t-il déclaré. Les entreprises doivent donc standardiser un ensemble d’outils, puis développer leurs compétences autour de celui-ci.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





Intelligent App Control est un outil très utile dans Windows 11 qui aide à protéger votre PC contre les applications non autorisées qui peuvent endommager vos données, telles que les ransomwares ou les logiciels espions. Cet article explique ce qu'est Smart App Control, comment il fonctionne et comment l'activer ou le désactiver dans Windows 11. Qu’est-ce que Smart App Control dans Windows 11 ? Smart App Control (SAC) est une nouvelle fonctionnalité de sécurité introduite dans la mise à jour Windows 1122H2. Il fonctionne avec Microsoft Defender ou un logiciel antivirus tiers pour bloquer les applications potentiellement inutiles susceptibles de ralentir votre appareil, d'afficher des publicités inattendues ou d'effectuer d'autres actions inattendues. Application intelligente

Avec une capacité d'imitation de l'IA aussi puissante, il est vraiment impossible de l'empêcher. Le développement de l’IA a-t-il atteint ce niveau aujourd’hui ? Votre pied avant fait voler les traits de votre visage, et sur votre pied arrière, la même expression est reproduite. Regarder fixement, lever les sourcils, faire la moue, aussi exagérée que soit l'expression, tout est parfaitement imité. Augmentez la difficulté, haussez les sourcils, ouvrez plus grand les yeux, et même la forme de la bouche est tordue, et l'avatar du personnage virtuel peut parfaitement reproduire l'expression. Lorsque vous ajustez les paramètres à gauche, l'avatar virtuel à droite modifiera également ses mouvements en conséquence pour donner un gros plan de la bouche et des yeux. On ne peut pas dire que l'imitation soit exactement la même, seule l'expression est exactement la même. idem (extrême droite). La recherche provient d'institutions telles que l'Université technique de Munich, qui propose GaussianAvatars, qui

Cet article est reproduit avec la permission du compte public Autonomous Driving Heart. Veuillez contacter la source pour la réimpression. Titre original : MotionLM : Multi-Agent Motion Forecasting as Language Modeling Lien vers l'article : https://arxiv.org/pdf/2309.16534.pdf Affiliation de l'auteur : Conférence Waymo : ICCV2023 Idée d'article : Pour la planification de la sécurité des véhicules autonomes, prédisez de manière fiable le comportement futur des agents routiers est cruciale. Cette étude représente les trajectoires continues sous forme de séquences de jetons de mouvement discrets et traite la prédiction de mouvement multi-agents comme une tâche de modélisation du langage. Le modèle que nous proposons, MotionLM, présente les avantages suivants :

Le magazine "ComputerWorld" a écrit un article disant que "la programmation disparaîtra d'ici 1960" parce qu'IBM a développé un nouveau langage FORTRAN, qui permet aux ingénieurs d'écrire les formules mathématiques dont ils ont besoin, puis de les soumettre à l'ordinateur pour que la programmation se termine. Picture Quelques années plus tard, nous avons entendu un nouveau dicton : tout homme d'affaires peut utiliser des termes commerciaux pour décrire ses problèmes et dire à l'ordinateur quoi faire. Grâce à ce langage de programmation appelé COBOL, les entreprises n'ont plus besoin de programmeurs. Plus tard, il est dit qu'IBM a développé un nouveau langage de programmation appelé RPG qui permet aux employés de remplir des formulaires et de générer des rapports, de sorte que la plupart des besoins de programmation de l'entreprise puissent être satisfaits grâce à lui.

Le robot humanoïde, qui mesure 1,65 mètre, pèse 55 kilogrammes et possède 44 degrés de liberté dans son corps, peut marcher rapidement, éviter les obstacles rapidement, monter et descendre régulièrement les pentes et résister aux chocs et aux interférences. Vous pouvez désormais le ramener chez vous. ! Le robot humanoïde universel GR-1 de Fourier Intelligence a commencé la prévente. Salle de conférence Robot Le robot humanoïde universel Fourier GR-1 de Fourier Intelligence est maintenant ouvert à la prévente. GR-1 a une configuration de tronc hautement bionique et un contrôle de mouvement anthropomorphique. Il a 44 degrés de liberté dans tout le corps. Il a la capacité de marcher, d'éviter les obstacles, de franchir des obstacles, de monter et de descendre des pentes, de résister aux interférences et de s'adapter. à différentes surfaces routières. C'est un système d'intelligence artificielle général. Page de prévente du site officiel : www.fftai.cn/order#FourierGR-1# Fourier Intelligence doit être réécrit.

La prédiction de trajectoire a pris de l'ampleur au cours des deux dernières années, mais l'essentiel se concentre sur la direction de la prédiction de trajectoire des véhicules. Aujourd'hui, Autonomous Driving Heart partagera avec vous l'algorithme de prédiction de trajectoire des piétons sur NeurIPS - SHENet. les schémas de déplacement sont généralement, dans une certaine mesure, conformes à des règles limitées. Sur la base de cette hypothèse, SHENet prédit la trajectoire future d'une personne en apprenant des règles de scène implicites. L'article a été autorisé comme original par Autonomous Driving Heart ! La compréhension personnelle de l'auteur est qu'à l'heure actuelle, prédire la trajectoire future d'une personne reste un problème difficile en raison du caractère aléatoire et subjectif du mouvement humain. Cependant, les schémas de mouvement humain dans les scènes contraintes varient souvent en raison des contraintes de la scène (telles que les plans d'étage, les routes et les obstacles) et de l'interactivité d'humain à humain ou d'humain à objet.

Récemment, Huawei a annoncé qu'il lancerait en septembre un nouveau produit portable intelligent équipé du système de détection Xuanji, qui devrait être la dernière montre intelligente de Huawei. Ce nouveau produit intégrera des fonctions avancées de surveillance de la santé émotionnelle. Le système de perception Xuanji fournit aux utilisateurs une évaluation complète de la santé avec ses six caractéristiques : précision, exhaustivité, rapidité, flexibilité, ouverture et évolutivité. Le système utilise un module de super-détection et optimise la technologie d'architecture de chemin optique multicanal, ce qui améliore considérablement la précision de surveillance des indicateurs de base tels que la fréquence cardiaque, l'oxygène dans le sang et la fréquence respiratoire. En outre, le système de détection Xuanji a également élargi la recherche sur les états émotionnels sur la base des données de fréquence cardiaque. Il ne se limite pas aux indicateurs physiologiques, mais peut également évaluer l'état émotionnel et le niveau de stress de l'utilisateur. Il prend en charge la surveillance de plus de 60 sports. indicateurs de santé, couvrant les domaines cardiovasculaire, respiratoire, neurologique, endocrinien,

01 Qu'est-ce qu'un châssis de skateboard ? Le soi-disant châssis de skateboard intègre à l'avance la batterie, le système d'entraînement électrique, la suspension, les freins et d'autres composants sur le châssis pour réaliser la séparation et le découplage de la carrosserie et du châssis. Grâce à ce type de plateforme, les constructeurs automobiles peuvent réduire considérablement les coûts initiaux de R&D et de tests, tout en répondant rapidement à la demande du marché pour créer différents modèles. Surtout à l'ère de la conduite sans conducteur, la disposition de la voiture n'est plus centrée sur la conduite, mais se concentrera sur les attributs d'espace. Le châssis de type skateboard peut offrir plus de possibilités pour le développement de l'habitacle supérieur. Comme le montre l'image ci-dessus, bien sûr, lorsque nous regardons le châssis du skateboard, nous ne devrions pas nous laisser encadrer par la première impression de "Oh, c'est un corps non porteur" lorsque nous y arrivons. Il n’y avait pas de voitures électriques à l’époque, donc pas de batteries valant des centaines de kilogrammes, pas de système de direction électrique capable d’éliminer la colonne de direction, ni de système de freinage électrique.
