SQL语言快速入门之一_MySQL
SQL是英文Structured Query Language的缩写,意思为结构化查询语言。SQL语言的主要功能就是同各种数据库建立联系,进行沟通。按照ANSI(美国国家标准协会)的规定,SQL被作为关系型数据库管理系统的标准语言。SQL语句可以用来执行各种各样的操作,例如更新数据库中的数据,从数据库中提取数据等。目前,绝大多数流行的关系型数据库管理系统,如Oracle, Sybase, Microsoft SQL Server, Access等都采用了SQL语言标准。虽然很多数据库都对SQL语句进行了再开发和扩展,但是包括Select, Insert, Update, Delete, Create, 以及Drop在内的标准的SQL命令仍然可以被用来完成几乎所有的数据库操作。下面,我们就来详细介绍一下SQL语言的基本知识。
数据库表格
一个典型的关系型数据库通常由一个或多个被称作表格的对象组成。数据库中的所有数据或信息都被保存在这些数据库表格中。数据库中的每一个表格都具有自己唯一的表格名称,都是由行和列组成,其中每一列包括了该列名称,数据类型,以及列的其它属性等信息,而行则具体包含某一列的记录或数据。以下,是一个名为天气的数据库表格的实例。
城市 最高气温 最低气温
北京 10 5
上海 15 8
天津 8 2
重庆 20 13
该表格中“城市”, “最高气温”和“最低气温”就是三个不同的列,而表格中的每一行则包含了具体的表格数据。
数据查询
在众多的SQL命令中,select语句应该算是使用最频繁的。Select语句主要被用来对数据库进行查询并返回符合用户查询标准的结果数据。Select语句的语法格式如下:
select column1 [, column2,etc] from tablename
[where condition];
([] 表示可选项)
select语句中位于select关键词之后的列名用来决定那些列将作为查询结果返回。用户可以按照自己的需要选择任意列,还可以使用通配符“*”来设定返回表格中的所有列。
select语句中位于from关键词之后的表格名称用来决定将要进行查询操作的目标表格。
Select语句中的where可选从句用来规定哪些数据值或哪些行将被作为查询结果返回或显示。
在where条件从句中可以使用以下一些运算符来设定查询标准:
= 等于
> 大于
>= 大于等于
不等于
除了上面所提到的运算符外,LIKE运算符在where条件从句中也非常重要。LIKE运算符的功能非常强大,通过使用LIKE运算符可以设定只选择与用户规定格式相同的记录。此外,我们还可以使用通配符“%”用来代替任何字符串。举例如下:
select firstname, lastname, city
from employee
where firstname LIKE ‘E%’;
(注意,字符串必须被包含在单括号内)
上述SQL语句将会查询所有名称以E开头的姓名。或者,通过如下语句:
select * from employee
where firstname = ‘May’;
查询所有名称为May的行。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Kimi : En une seule phrase, un PPT est prêt en seulement dix secondes. PPT est tellement ennuyeux ! Pour tenir une réunion, vous devez avoir un PPT ; pour rédiger un rapport hebdomadaire, vous devez avoir un PPT ; pour solliciter des investissements, vous devez présenter un PPT ; même pour accuser quelqu'un de tricherie, vous devez envoyer un PPT ; L'université ressemble plus à une spécialisation PPT. Vous regardez le PPT en classe et faites le PPT après les cours. Peut-être que lorsque Dennis Austin a inventé le PPT il y a 37 ans, il ne s'attendait pas à ce qu'un jour le PPT devienne aussi répandu. Parler de notre dure expérience de création de PPT nous fait monter les larmes aux yeux. "Il m'a fallu trois mois pour réaliser un PPT de plus de 20 pages, et je l'ai révisé des dizaines de fois. J'avais envie de vomir quand j'ai vu le PPT." "À mon apogée, je faisais cinq PPT par jour, et même ma respiration." était PPT." Si vous avez une réunion impromptue, vous devriez le faire

Tôt le matin du 20 juin, heure de Pékin, CVPR2024, la plus grande conférence internationale sur la vision par ordinateur qui s'est tenue à Seattle, a officiellement annoncé le meilleur article et d'autres récompenses. Cette année, un total de 10 articles ont remporté des prix, dont 2 meilleurs articles et 2 meilleurs articles étudiants. De plus, il y a eu 2 nominations pour les meilleurs articles et 4 nominations pour les meilleurs articles étudiants. La conférence la plus importante dans le domaine de la vision par ordinateur (CV) est la CVPR, qui attire chaque année un grand nombre d'instituts de recherche et d'universités. Selon les statistiques, un total de 11 532 articles ont été soumis cette année, dont 2 719 ont été acceptés, avec un taux d'acceptation de 23,6 %. Selon l'analyse statistique des données CVPR2024 du Georgia Institute of Technology, du point de vue des sujets de recherche, le plus grand nombre d'articles est la synthèse et la génération d'images et de vidéos (Imageandvideosyn

Nous savons que le LLM est formé sur des clusters informatiques à grande échelle utilisant des données massives. Ce site a présenté de nombreuses méthodes et technologies utilisées pour aider et améliorer le processus de formation LLM. Aujourd'hui, ce que nous souhaitons partager est un article qui approfondit la technologie sous-jacente et présente comment transformer un ensemble de « bare metals » sans même un système d'exploitation en un cluster informatique pour la formation LLM. Cet article provient d'Imbue, une startup d'IA qui s'efforce d'atteindre une intelligence générale en comprenant comment les machines pensent. Bien sûr, transformer un tas de « bare metal » sans système d'exploitation en un cluster informatique pour la formation LLM n'est pas un processus facile, plein d'exploration et d'essais et d'erreurs, mais Imbue a finalement réussi à former un LLM avec 70 milliards de paramètres et dans. le processus s'accumule

Rédacteur du Machine Power Report : Yang Wen La vague d’intelligence artificielle représentée par les grands modèles et l’AIGC a discrètement changé notre façon de vivre et de travailler, mais la plupart des gens ne savent toujours pas comment l’utiliser. C'est pourquoi nous avons lancé la rubrique « AI in Use » pour présenter en détail comment utiliser l'IA à travers des cas d'utilisation de l'intelligence artificielle intuitifs, intéressants et concis et stimuler la réflexion de chacun. Nous invitons également les lecteurs à soumettre des cas d'utilisation innovants et pratiques. Lien vidéo : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Récemment, le vlog de la vie d'une fille vivant seule est devenu populaire sur Xiaohongshu. Une animation de style illustration, associée à quelques mots de guérison, peut être facilement récupérée en quelques jours seulement.

La génération augmentée par récupération (RAG) est une technique qui utilise la récupération pour améliorer les modèles de langage. Plus précisément, avant qu'un modèle de langage ne génère une réponse, il récupère les informations pertinentes à partir d'une vaste base de données de documents, puis utilise ces informations pour guider le processus de génération. Cette technologie peut considérablement améliorer l'exactitude et la pertinence du contenu, atténuer efficacement le problème des hallucinations, augmenter la vitesse de mise à jour des connaissances et améliorer la traçabilité de la génération de contenu. RAG est sans aucun doute l’un des domaines de recherche les plus passionnants en matière d’intelligence artificielle. Pour plus de détails sur RAG, veuillez vous référer à l'article de la rubrique de ce site "Quelles sont les nouveautés de RAG, spécialisée dans le rattrapage des défauts des grands modèles ?" Cette revue l'explique clairement. Mais RAG n'est pas parfait et les utilisateurs rencontrent souvent des « problèmes » lorsqu'ils l'utilisent. Récemment, la solution avancée d'IA générative de NVIDIA

Les dernières versions d'Apple des systèmes iOS18, iPadOS18 et macOS Sequoia ont ajouté une fonctionnalité importante à l'application Photos, conçue pour aider les utilisateurs à récupérer facilement des photos et des vidéos perdues ou endommagées pour diverses raisons. La nouvelle fonctionnalité introduit un album appelé "Récupéré" dans la section Outils de l'application Photos qui apparaîtra automatiquement lorsqu'un utilisateur a des photos ou des vidéos sur son appareil qui ne font pas partie de sa photothèque. L'émergence de l'album « Récupéré » offre une solution aux photos et vidéos perdues en raison d'une corruption de la base de données, d'une application d'appareil photo qui n'enregistre pas correctement dans la photothèque ou d'une application tierce gérant la photothèque. Les utilisateurs n'ont besoin que de quelques étapes simples

Comment utiliser MySQLi pour établir une connexion à une base de données en PHP : Inclure l'extension MySQLi (require_once) Créer une fonction de connexion (functionconnect_to_db) Appeler la fonction de connexion ($conn=connect_to_db()) Exécuter une requête ($result=$conn->query()) Fermer connexion ( $conn->close())

Le 24 juillet, Keling AI, grand modèle de génération vidéo Kuaishou, a annoncé que le modèle de base avait de nouveau été mis à niveau et était entièrement ouvert aux tests internes. Kuaishou a déclaré que afin de permettre à davantage d'utilisateurs d'utiliser Keling AI et de mieux répondre aux différents niveaux d'utilisation des créateurs, il lancera désormais également officiellement un système d'adhésion pour différentes catégories de créateurs, sur la base de tests internes entièrement ouverts. membres. Fournir des services fonctionnels exclusifs correspondants. Dans le même temps, le modèle de base de Keling AI a également été à nouveau mis à niveau pour améliorer encore l'expérience utilisateur. L'effet de modèle de base a été mis à niveau pour améliorer encore l'expérience utilisateur. Depuis sa sortie il y a plus d'un mois, Keling AI a été mis à niveau et itéré à plusieurs reprises. Avec le lancement de ce système d'adhésion, l'effet de modèle de base de Keling AI a été amélioré. à nouveau subi une transformation. La première est que la qualité de l'image a été considérablement améliorée et les effets visuels générés grâce au modèle de base amélioré.
