


L'application de la programmation fonctionnelle Golang dans l'apprentissage automatique
Avantages de la programmation fonctionnelle dans l'apprentissage automatique : Immuabilité : assurez-vous que les données ne seront pas endommagées lors de l'exécution de l'algorithme et évitez les erreurs difficiles à suivre. Modularité : créez et composez facilement des fonctions via des fermetures et des expressions lambda, rendant les algorithmes maintenables et réutilisables. Concurrence et parallélisme : utilisez des goroutines et des canaux pour traiter de grandes quantités de données en parallèle afin d'améliorer l'efficacité des algorithmes. Cas pratiques : comme la classification d'images, la programmation fonctionnelle peut être utilisée pour construire divers algorithmes d'apprentissage automatique et simplifier le processus de développement.
Application GoLang de la programmation fonctionnelle dans l'apprentissage automatique
La programmation fonctionnelle est un paradigme de programmation qui traite le calcul comme l'application de fonctions mathématiques à des données immuables. Dans le domaine de l'apprentissage automatique, la programmation fonctionnelle offre de nombreux avantages, notamment la simplicité du code, la modularité, la concurrence et le parallélisme.
Immuabilité
Les algorithmes d'apprentissage automatique impliquent souvent la manipulation de grandes quantités de données. L'immuabilité de la programmation fonctionnelle garantit que les données ne sont pas corrompues lors de l'exécution de l'algorithme, ce qui permet d'éviter les erreurs difficiles à suivre. Par exemple, dans GoLang, nous pouvons utiliser le type immutable.Map
pour créer des cartes immuables : immutable.Map
类型来创建不可变映射:
import "github.com/cockroachdb/apd" var data = immutable.NewMap[apd.Decimal, apd.Decimal]()
模块性
机器学习算法通常由许多较小的函数组成,这些函数执行特定任务。函数式编程通过 lambda 表达式和闭包等结构,使我们可以轻松创建和组合这些函数。例如,以下 GoLang 代码定义了一个闭包,用于计算样本的均值:
func mean(samples []float64) (float64, error) { sum := 0.0 for _, sample := range samples { sum += sample } return sum / float64(len(samples)), nil }
并发性和并行性
机器学习算法通常需要处理大量数据。函数式编程可以通过并发性和并行性来加速此过程。GoLang 提供了 goroutine
和 channels
var models []Model for i := 0; i < numModels; i++ { go func(i int) { models[i] = trainModel(data, i) }(i) }
Modularity
Les algorithmes d'apprentissage automatique se composent généralement de nombreuses fonctions plus petites qui effectuent des tâches spécifiques. La programmation fonctionnelle nous permet de créer et de composer facilement ces fonctions via des constructions telles que des expressions lambda et des fermetures. Par exemple, le code GoLang suivant définit une fermeture qui calcule la moyenne d'un échantillon :type CNN struct { layers []Layer } func NewCNN(numClasses, imageSize int) *CNN { return &CNN{ layers: []Layer{ NewConvolutionalLayer(32, 3, imageSize, imageSize), NewMaxPoolingLayer(2, 2), NewFlattenLayer(), NewFullyConnectedLayer(numClasses), }, } } func (c *CNN) Predict(image []float64) []float64 { for _, layer := range c.layers { image = layer.Forward(image) } return image }
Concurrence et parallélisme
🎜🎜Les algorithmes d'apprentissage automatique doivent souvent traiter de grandes quantités de données. La programmation fonctionnelle peut accélérer ce processus grâce à la concurrence et au parallélisme. GoLang fournit desgoroutine
et des canaux
pour y parvenir. Par exemple, le code suivant utilise des goroutines concurrentes pour entraîner le modèle en parallèle : 🎜rrreee🎜🎜Exemple pratique : classification d'images 🎜🎜🎜La programmation fonctionnelle peut être utilisée pour implémenter divers algorithmes d'apprentissage automatique. Par exemple, nous pouvons l'utiliser pour créer un classificateur d'images. L'extrait de code GoLang suivant montre comment classer des images à l'aide d'un réseau neuronal convolutif (CNN) : 🎜rrreee🎜La programmation fonctionnelle offre de nombreux avantages pour l'apprentissage automatique. L'immuabilité, la modularité, la concurrence et le parallélisme le rendent idéal pour créer des applications d'apprentissage automatique robustes, maintenables et efficaces. 🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Il existe de nombreuses façons d'installer Deepseek, notamment: Compiler à partir de Source (pour les développeurs expérimentés) en utilisant des packages précompilés (pour les utilisateurs de Windows) à l'aide de conteneurs Docker (pour le plus pratique, pas besoin de s'inquiéter de la compatibilité), quelle que soit la méthode que vous choisissez, veuillez lire Les documents officiels documentent soigneusement et les préparent pleinement à éviter des problèmes inutiles.

Deepseekai Tool User Guide et FAQ Deepseek est un puissant outil intelligent AI. FAQ: La différence entre les différentes méthodes d'accès: il n'y a pas de différence de fonction entre la version Web, la version de l'application et les appels API, et l'application n'est qu'un wrapper pour la version Web. Le déploiement local utilise un modèle de distillation, qui est légèrement inférieur à la version complète de Deepseek-R1, mais le modèle 32 bits a théoriquement une capacité de version complète de 90%. Qu'est-ce qu'une taverne? SillyTavern est une interface frontale qui nécessite d'appeler le modèle AI via l'API ou le olllama. Qu'est-ce que la limite de rupture

Les outils d'IA incluent : Doubao, ChatGPT, Gemini, BlenderBot, etc.

Investissement en niveaux de gris: le canal des investisseurs institutionnels pour entrer sur le marché des crypto-monnaies. La société a lancé plusieurs fiducies cryptographiques, ce qui a attiré une attention généralisée, mais l'impact de ces fonds sur les prix des jetons varie considérablement. Cet article présentera en détail certains des principaux fonds de fiducie de crypto de Graycale. Grayscale Major Crypto Trust Funds disponibles dans un investissement GrayScale GRAYS (fondée par DigitalCurrencyGroup en 2013) gère une variété de fonds fiduciaires d'actifs cryptographiques, fournissant des investisseurs institutionnels et des particuliers élevés avec des canaux d'investissement conformes. Ses principaux fonds comprennent: ZCash (Zec), Sol,

L'entrée des principaux acteurs du marché Castle Securities dans Bitcoin Market Maker est un symbole de la maturité du marché Bitcoin et une étape clé pour les forces financières traditionnelles pour concurrencer le pouvoir de tarification des actifs. Le 25 février, selon Bloomberg, Citadel Securities cherche à devenir un fournisseur de liquidité pour les crypto-monnaies. La société vise à rejoindre la liste des fabricants de marché sur divers échanges, y compris les échanges exploités par CoinbaseGlobal, Binanceholdings et Crypto.com, ont déclaré des personnes familières avec l'affaire. Une fois approuvé par l'échange, la société prévoyait initialement de créer une équipe de fabricants de marchés en dehors des États-Unis. Ce mouvement n'est pas seulement un signe

ElizaOSV2: L'autonomisation de l'IA et de la direction de la nouvelle économie de WEB3. Cet article plongera dans les principales innovations d'ElizaOSV2 et comment elle façonne une économie future axée sur l'IA. Automatisation de l'IA: Aller exploiter indépendamment Elizaos était à l'origine un cadre d'IA axé sur l'automatisation Web3. La version V1 permet à l'IA d'interagir avec les contrats intelligents et les données de la blockchain, tandis que la version V2 atteint des améliorations de performances significatives. Au lieu d'exécuter simplement des instructions simples, l'IA peut gérer indépendamment les workflows, exploiter des affaires et développer des stratégies financières. Mise à niveau de l'architecture: amélioré un

Des chercheurs de l'Université de Shanghai Jiaotong, de Shanghai Ailab et de l'Université chinoise de Hong Kong ont lancé le projet open source Visual-RFT (visual d'amélioration), qui ne nécessite qu'une petite quantité de données pour améliorer considérablement les performances du gros modèle de langage visuel (LVLM). Visual-RFT combine intelligemment l'approche d'apprentissage en renforcement basée sur les règles de Deepseek-R1 avec le paradigme de relâchement de renforcement d'OpenAI (RFT), prolongeant avec succès cette approche du champ de texte au champ visuel. En concevant les récompenses de règles correspondantes pour des tâches telles que la sous-catégorisation visuelle et la détection d'objets, Visual-RFT surmonte les limites de la méthode Deepseek-R1 limitée au texte, au raisonnement mathématique et à d'autres domaines, fournissant une nouvelle façon de formation LVLM. Vis

Observation hebdomadaire: les entreprises thésaurisation du Bitcoin - un changement de brassage que je souligne souvent certaines tendances du marché négligées dans des mémos hebdomadaires. Le mouvement de Microstrategy est un exemple brutal. Beaucoup de gens peuvent dire: "Microstrategy et Michaelsaylor sont déjà bien connus, à quoi allez-vous faire attention?" Cette vue est unilatérale. Des recherches approfondies sur l'adoption du bitcoin en tant qu'actif de réserve au cours des derniers mois montrent qu'il ne s'agit pas d'un cas isolé, mais d'une tendance majeure qui émerge. Je prédis qu'au cours des 12 à 18 prochains mois, des centaines d'entreprises suivront le pas et achèteront de grandes quantités de Bitcoin
