简单介绍Python中的JSON模块
(一)什么是json:
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。
JSON建构于两种结构:
“名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。
值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。
这些都是常见的数据结构。事实上大部分现代计算机语言都以某种形式支持它们。这使得一种数据格式在同样基于这些结构的编程语言之间交换成为可能。
(二)Python JSON模块
Python2.6开始加入了JSON模块,无需另外下载,Python的Json模块序列化与反序列化的过程分别是 encoding和 decoding。encoding-把一个Python对象编码转换成Json字符串;decoding-把Json格式字符串解码转换成Python对象。要使用json模块必须先导入:
import json
1,简单数据类型的处理
Python JSON模块可以直接处理简单数据类型(string、unicode、int、float、list、tuple、dict)。 json.dumps()方法返回一个str对象,编码过程中会存在从python原始类型向json类型的转化过程,具体的转化对照如下:
json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的)、separators,indent等参数,dumps方法的定义为:
json.dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,cls=None, indent=None, separators=None, encoding="utf-8", default=None, sort_keys=False,**kw)
使用简单的json.dumps方法对简单数据类型进行编码,例如:
obj = [[1,2,3],123,123.123,'abc',{'key1':(1,2,3),'key2':(4,5,6)}] encodedjson = json.dumps(obj) print 'the original list:\n',obj print 'length of obj is:',len(repr(obj)) print 'repr(obj),replace whiteblank with *:\n', repr(obj).replace(' ','*') print 'json encoded,replace whiteblank with *:\n',encodedjson.replace(' ','*')
输出:(Python默认的item separator是‘, '(不是','),所以list无论是转化成字符串还是json格式,成员之间都是有空格隔开的)
the original list: [[1, 2, 3], 123, 123.123, 'abc', {'key2': (4, 5, 6), 'key1': (1, 2, 3)}] length of obj is: 72 repr(obj),replace whiteblank with *: [[1,*2,*3],*123,*123.123,*'abc',*{'key2':*(4,*5,*6),*'key1':*(1,*2,*3)}] json encoded,replace whiteblank with *: [[1,*2,*3],*123,*123.123,*"abc",*{"key2":*[4,*5,*6],*"key1":*[1,*2,*3]}] <type 'list'>
我们接下来在对encodedjson进行decode,得到原始数据,需要使用的json.loads()函数。loads方法返回了原始的对象,但是仍然发生了一些数据类型的转化,上例中‘abc'转化为了unicode类型。需要注意的是,json字符串中的字典类型的key必须要用双引号“”json.loads()才能正常解析。从json到python的类型转化对照如下:
decodejson = json.loads(encodedjson) print 'the type of decodeed obj from json:', type(decodejson) print 'the obj is:\n',decodejson print 'length of decoded obj is:',len(repr(decodejson))
输出:
the type of decodeed obj from json: <type 'list'> the obj is: [[1, 2, 3], 123, 123.123, u'abc', {u'key2': [4, 5, 6], u'key1': [1, 2, 3]}] length of decoded obj is: 75 #比原obj多出了3个unicode编码标示‘u'
sort_keys排序功能使得存储的数据更加有利于观察,也使得对json输出的对象进行比较。下例中,data1和data2数据应该是一样的,dict存储的无序性造成两者无法比较。
data1 = {'b':789,'c':456,'a':123} data2 = {'a':123,'b':789,'c':456} d1 = json.dumps(data1,sort_keys=True) d2 = json.dumps(data2) d3 = json.dumps(data2,sort_keys=True) print 'sorted data1(d1):',d1 print 'unsorted data2(d2):',d2 print 'sorted data2(d3):',d3 print 'd1==d2?:',d1==d2 print 'd1==d3?:',d1==d3
输出:
sorted data1(d1): {"a": 123, "b": 789, "c": 456} unsorted data2(d2): {"a": 123, "c": 456, "b": 789} sorted data2(d3): {"a": 123, "b": 789, "c": 456} d1==d2?: False d1==d3?: True
indent参数是缩进的意思,它可以使数据的存储格式更优雅、可读性更强,这是通过增加一些冗余的空格进行填充的。但是在解码(json.loads())时,空白填充会被删除。
data = {'b':789,'c':456,'a':123} d1 = json.dumps(data,sort_keys=True,indent=4) print 'data len is:',len(repr(data)) print '4 indented data:\n',d1 d2 = json.loads(d1) print 'decoded DATA:', repr(d2) print 'len of decoded DATA:',len(repr(d2))
输出:(可见loads时会将dumps时增加的intent 填充空格去除)
data len is: 30 4 indented data: { "a": 123, "b": 789, "c": 456 } decoded DATA: {u'a': 123, u'c': 456, u'b': 789} len of decoded DATA: 33
json主要是作为一种数据通信的格式存在的,无用的空格会浪费通信带宽,适当时候也要对数据进行压缩。separator参数可以起到这样的作用,该参数传递是一个元组,包含分割对象的字符串,其实质就是将Python默认的(‘, ',': ')分隔符替换成(',',':')。
data = {'b':789,'c':456,'a':123} print 'DATA:', repr(data) print 'repr(data) :', len(repr(data)) print 'dumps(data) :', len(json.dumps(data)) print 'dumps(data, indent=2) :', len(json.dumps(data, indent=4)) print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))
输出:
DATA: {'a': 123, 'c': 456, 'b': 789} repr(data) : 30 dumps(data) : 30 dumps(data, indent=2) : 46 dumps(data, separators): 25
另一个比较有用的dumps参数是skipkeys,默认为False。 dumps方法存储dict对象时key必须是str类型,其他类型会导致TypeError异常产生,如果将skipkeys设为True则会优雅的滤除非法keys。
data = {'b':789,'c':456,(1,2):123} print'original data:',repr(data) print 'json encoded',json.dumps(data,skipkeys=True)
输出:
original data: {(1, 2): 123, 'c': 456, 'b': 789} json encoded {"c": 456, "b": 789}
2,JSON处理自定义数据类型
json模块不仅可以处理普通的python内置类型,也可以处理我们自定义的数据类型,而往往处理自定义的对象是很常用的。
如果直接通过json.dumps方法对Person的实例进行处理的话,会报错,因为json无法支持这样的自动转化。通过上面所提到的json和 python的类型转化对照表,可以发现,object类型是和dict相关联的,所以我们需要把我们自定义的类型转化为dict,然后再进行处理。这里,有两种方法可以使用。
方法一:自己写转化函数
自定义object类型和dict类型进行转化:encode-定义函数 object2dict()将对象模块名、类名以及__dict__存储在一个字典并返回;decode-定义dict2object()解析出模块名、类名、参数,创建新的对象并返回。在json.dumps()中通过default参数指定转化过程中调用的函数;json.loads()则通过 object_hook指定转化函数。
方法二:继承JSONEncoder和JSONDecoder类,覆写相关方法
JSONEncoder类负责编码,主要是通过其default函数进行转化,我们可以重载该方法。对于JSONDecoder,亦然。
#handling private data type #define class class Person(object): def __init__(self,name,age): self.name = name self.age = age def __repr__(self): return 'Person Object name : %s , age : %d' % (self.name,self.age) #define transfer functions def object2dict(obj): #convert object to a dict d = {'__class__':obj.__class__.__name__, '__module__':obj.__module__} d.update(obj.__dict__) return d def dict2object(d): #convert dict to object if'__class__' in d: class_name = d.pop('__class__') module_name = d.pop('__module__') module = __import__(module_name) print 'the module is:', module class_ = getattr(module,class_name) args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args print 'the atrribute:', repr(args) inst = class_(**args) #create new instance else: inst = d return inst #recreate the default method class LocalEncoder(json.JSONEncoder): def default(self,obj): #convert object to a dict d = {'__class__':obj.__class__.__name__, '__module__':obj.__module__} d.update(obj.__dict__) return d class LocalDecoder(json.JSONDecoder): def __init__(self): json.JSONDecoder.__init__(self,object_hook = self.dict2object) def dict2object(self, d): #convert dict to object if'__class__' in d: class_name = d.pop('__class__') module_name = d.pop('__module__') module = __import__(module_name) class_ = getattr(module,class_name) args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args inst = class_(**args) #create new instance else: inst = d return inst #test function if __name__ == '__main__': p = Person('Aidan',22) print p #json.dumps(p)#error will be throwed d = object2dict(p) print 'method-json encode:', d o = dict2object(d) print 'the decoded obj type: %s, obj:%s' % (type(o),repr(o)) dump = json.dumps(p,default=object2dict) print 'dumps(default = object2dict):',dump load = json.loads(dump,object_hook = dict2object) print 'loads(object_hook = dict2object):',load d = LocalEncoder().encode(p) o = LocalDecoder().decode(d) print 'recereated encode method: ',d print 'recereated decode method: ',type(o),o
输出:
Person Object name : Aidan , age : 22 method-json encode: {'age': 22, '__module__': '__main__', '__class__': 'Person', 'name': 'Aidan'} the module is: <module '__main__' from 'D:/Project/Python/study_json'> the atrribute: {'age': 22, 'name': 'Aidan'} the decoded obj type: <class '__main__.Person'>, obj:Person Object name : Aidan , age : 22 dumps(default = object2dict): {"age": 22, "__module__": "__main__", "__class__": "Person", "name": "Aidan"} the module is: <module '__main__' from 'D:/Project/Python/study_json'> the atrribute: {'age': 22, 'name': u'Aidan'} loads(object_hook = dict2object): Person Object name : Aidan , age : 22 recereated encode method: {"age": 22, "__module__": "__main__", "__class__": "Person", "name": "Aidan"} recereated decode method: <class '__main__.Person'> Person Object name : Aidan , age : 22

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Une application qui convertit le XML directement en PDF ne peut être trouvée car ce sont deux formats fondamentalement différents. XML est utilisé pour stocker des données, tandis que PDF est utilisé pour afficher des documents. Pour terminer la transformation, vous pouvez utiliser des langages de programmation et des bibliothèques telles que Python et ReportLab pour analyser les données XML et générer des documents PDF.

Problèmes de définition de l'énumération constante de la chaîne à Protobuf Lorsque vous utilisez Protobuf, vous rencontrez souvent des situations où vous devez associer le type d'énumération aux constantes de chaîne ...

Pour les petits fichiers XML, vous pouvez remplacer directement le contenu d'annotation par un éditeur de texte; Pour les fichiers volumineux, il est recommandé d'utiliser l'analyseur XML pour le modifier pour garantir l'efficacité et la précision. Soyez prudent lors de la suppression des commentaires XML, le maintien des commentaires aide généralement à coder la compréhension et la maintenance. Les conseils avancés fournissent un exemple de code Python pour modifier les commentaires à l'aide de l'analyseur XML, mais l'implémentation spécifique doit être ajustée en fonction de la bibliothèque XML utilisée. Faites attention aux problèmes d'encodage lors de la modification des fichiers XML. Il est recommandé d'utiliser le codage UTF-8 et de spécifier le format de codage.

La modification du contenu XML nécessite une programmation, car elle nécessite une recherche précise des nœuds cibles pour ajouter, supprimer, modifier et vérifier. Le langage de programmation dispose de bibliothèques correspondantes pour traiter XML et fournit des API pour effectuer des opérations sûres, efficaces et contrôlables comme les bases de données de fonctionnement.

La vitesse du XML mobile à PDF dépend des facteurs suivants: la complexité de la structure XML. Méthode de conversion de configuration du matériel mobile (bibliothèque, algorithme) Méthodes d'optimisation de la qualité du code (sélectionnez des bibliothèques efficaces, optimiser les algorithmes, les données de cache et utiliser le multi-threading). Dans l'ensemble, il n'y a pas de réponse absolue et elle doit être optimisée en fonction de la situation spécifique.

Utiliser la plupart des éditeurs de texte pour ouvrir des fichiers XML; Si vous avez besoin d'un affichage d'arbre plus intuitif, vous pouvez utiliser un éditeur XML, tel que Oxygen XML Editor ou XMLSPY; Si vous traitez les données XML dans un programme, vous devez utiliser un langage de programmation (tel que Python) et des bibliothèques XML (telles que XML.ETREE.ElementTree) pour analyser.

Pour convertir les images XML, vous devez d'abord déterminer la structure des données XML, puis sélectionner une bibliothèque graphique appropriée (telle que Matplotlib de Python) et la méthode, sélectionner une stratégie de visualisation basée sur la structure de données, considérer le volume de données et le format d'image, effectuer un traitement par lots ou utiliser des bibliothèques efficaces, et enfin les enregistrer sous le nom de PNG, JPEG, ou SVG selon les besoins.

Convertir XML en PDF avec une qualité de haute qualité sur votre téléphone mobile nécessite: analyser le XML dans le cloud et générer des PDF à l'aide d'une plate-forme informatique sans serveur. Choisissez un analyseur XML efficace et une bibliothèque de génération PDF. Gérer correctement les erreurs. Faites une utilisation complète de la puissance de cloud computing pour éviter les tâches lourdes sur votre téléphone. Ajustez la complexité en fonction des exigences, notamment le traitement des structures XML complexes, la génération de PDF de plusieurs pages et l'ajout d'images. Imprimez les informations du journal pour aider à déboguer. Optimiser les performances, sélectionner des analyseurs efficaces et des bibliothèques PDF et peut utiliser une programmation asynchrone ou des données XML prétraitées. Assurez-vous une bonne qualité de code et maintenabilité.
