python完成FizzBuzzWhizz问题(拉勾网面试题)示例
拉勾网面试题
1. 你首先说出三个不同的特殊数,要求必须是个位数,比如3、5、7。
2. 让所有学生拍成一队,然后按顺序报数。
3. 学生报数时,如果所报数字是第一个特殊数(3)的倍数,那么不能说该数字,而要说Fizz;如果所报数字是第二个特殊数(5)的倍数,那么要说Buzz;如果所报数字是第三个特殊数(7)的倍数,那么要说Whizz。
4. 学生报数时,如果所报数字同时是两个特殊数的倍数情况下,也要特殊处理,比如第一个特殊数和第二个特殊数的倍数,那么不能说该数字,而是要说FizzBuzz, 以此类推。如果同时是三个特殊数的倍数,那么要说FizzBuzzWhizz。
5. 学生报数时,如果所报数字包含了第一个特殊数,那么也不能说该数字,而是要说相应的单词,比如本例中第一个特殊数是3,那么要报13的同学应该说Fizz。如果数字中包含了第一个特殊数,那么忽略规则3和规则4,比如要报35的同学只报Fizz,不报BuzzWhizz。
现在,我们需要你完成一个程序来模拟这个游戏,它首先接受3个特殊数,然后输出100名学生应该报数的数或单词。
代码如下:
def check(a, dic, d): answer = '' if str(a) in str(d): return dic[a] for x in dic: if not (d % x): answer = answer + dic[x] if not answer: return d return answer if __name__ == '__main__': a = int(raw_input('input u a: ')) b = int(raw_input('input u b: ')) c = int(raw_input('input u c: ')) dic = {a: 'Fizz', b: 'Buzz', c: 'Whizz'} for x in xrange(1, 101): print check(a, dic, x)
代码如下:
['Fizz'[(str(3)not in str(i))*4:]or 'Fizz'[i % 3 * 5 : ] + 'Buzz'[i % 5 * 5 : ] + 'Whizz'[i % 7 * 5 : ] or i for i in range(1,101)]
相关文章推荐:《2020年python面试题汇总(最新)》

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI
