Python使用PyGreSQL操作PostgreSQL数据库教程
PostgreSQL是一款功能强大的开源关系型数据库,本文使用python实现了对开源数据库PostgreSQL的常用操作,其开发过程简介如下:
一、环境信息:
1、操作系统:
RedHat Enterprise Linux 4
Windows XP SP2
2、数据库:
PostgreSQL8.3
3、 开发工具:
Eclipse+Pydev+python2.6+PyGreSQL(提供pg模块)
4、说明:
a、PostgreSQL数据库运行于RedHat Linux上,Windows下也要安装pgAdmin(访问PostgreSQL服务器的客户端)。
b、PyGreSQL(即pg)模块下载路径及API手册:http://www.pygresql.org/
PyGreSQL模块点此本站下载
二、配置:
1、将pgAdmin安装路径下以下子目录添加到系统环境变量中:
E:\Program Files\PostgreSQL\8.3\lib
E:\Program Files\PostgreSQL\8.3\bin
2、将python安装目录C:\Python26\Lib\site-packages\pywin32_system32下的dll文件拷贝到C:\WINDOWS\system32
3、说明:如果跳过以上两步,在import pg时将会报错,并且会浪费较长时间才能搞定。
三、程序实现:
#!/usr/bin/env python # -*- coding: utf-8 -*- #导入日志及pg模块 import logging import logging.config import pg #日志配置文件名 LOG_FILENAME = 'logging.conf' #日志语句提示信息 LOG_CONTENT_NAME = 'pg_log' def log_init(log_config_filename, logname): ''' Function:日志模块初始化函数 Input:log_config_filename:日志配置文件名 lognmae:每条日志前的提示语句 Output: logger author: socrates date:2012-02-12 ''' logging.config.fileConfig(log_config_filename) logger = logging.getLogger(logname) return logger def operate_postgre_tbl_product(): ''' Function:操作pg数据库函数 Input:NONE Output: NONE author: socrates date:2012-02-12 ''' pgdb_logger.debug("operate_postgre_tbl_product enter...") #连接数据库 try: pgdb_conn = pg.connect(dbname = 'kevin_test', host = '192.168.230.128', user = 'dyx1024', passwd = '888888') except Exception, e: print e.args[0] pgdb_logger.error("conntect postgre database failed, ret = %s" % e.args[0]) return pgdb_logger.info("conntect postgre database(kevin_test) succ.") #删除表 sql_desc = "DROP TABLE IF EXISTS tbl_product3;" try: pgdb_conn.query(sql_desc) except Exception, e: print 'drop table failed' pgdb_logger.error("drop table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("drop table(tbl_product3) succ.") #创建表 sql_desc = '''CREATE TABLE tbl_product3( i_index INTEGER, sv_productname VARCHAR(32) );''' try: pgdb_conn.query(sql_desc) except Exception, e: print 'create table failed' pgdb_logger.error("create table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("create table(tbl_product3) succ.") #插入记录 sql_desc = "INSERT INTO tbl_product3(sv_productname) values('apple')" try: pgdb_conn.query(sql_desc) except Exception, e: print 'insert record into table failed' pgdb_logger.error("insert record into table failed, ret = %s" % e.args[0]) pgdb_conn.close() return pgdb_logger.info("insert record into table(tbl_product3) succ.") #查询表 1 sql_desc = "select * from tbl_product3" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #查询表2 sql_desc = "select * from tbl_test_port" for row in pgdb_conn.query(sql_desc).dictresult(): print row pgdb_logger.info("%s", row) #关闭数据库连接 pgdb_conn.close() pgdb_logger.debug("operate_sqlite3_tbl_product leaving...") if __name__ == '__main__': #初始化日志系统 pgdb_logger = log_init(LOG_FILENAME, LOG_CONTENT_NAME) #操作数据库 operate_postgre_tbl_product()
四、测试:
1、运行后命令行打印结果:
{'sv_productname': 'apple', 'i_index': None} {'i_status': 1, 'i_port': 2, 'i_index': 1} {'i_status': 1, 'i_port': 3, 'i_index': 2} {'i_status': 1, 'i_port': 5, 'i_index': 3} {'i_status': 1, 'i_port': 0, 'i_index': 5} {'i_status': 1, 'i_port': 18, 'i_index': 7} {'i_status': 1, 'i_port': 8, 'i_index': 8} {'i_status': 1, 'i_port': 7, 'i_index': 9} {'i_status': 1, 'i_port': 21, 'i_index': 10} {'i_status': 1, 'i_port': 23, 'i_index': 11} {'i_status': 1, 'i_port': 29, 'i_index': 12} {'i_status': 1, 'i_port': 3000, 'i_index': 4} {'i_status': 1, 'i_port': 1999, 'i_index': 6}
2、日志文件内容:
[2012-02-12 18:09:53,536 pg_log]DEBUG: operate_postgre_tbl_product enter... (test_func.py:36) [2012-02-12 18:09:53,772 pg_log]INFO: conntect postgre database(kevin_test) succ. (test_func.py:46) [2012-02-12 18:09:53,786 pg_log]INFO: drop table(tbl_product3) succ. (test_func.py:58) [2012-02-12 18:09:53,802 pg_log]INFO: create table(tbl_product3) succ. (test_func.py:73) [2012-02-12 18:09:53,802 pg_log]INFO: insert record into table(tbl_product3) succ. (test_func.py:85) [2012-02-12 18:09:53,802 pg_log]INFO: {'sv_productname': 'apple', 'i_index': None} (test_func.py:91) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 2, 'i_index': 1} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 3, 'i_index': 2} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 5, 'i_index': 3} (test_func.py:97) [2012-02-12 18:09:53,802 pg_log]INFO: {'i_status': 1, 'i_port': 0, 'i_index': 5} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 18, 'i_index': 7} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 8, 'i_index': 8} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 7, 'i_index': 9} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 21, 'i_index': 10} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 23, 'i_index': 11} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 29, 'i_index': 12} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 3000, 'i_index': 4} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]INFO: {'i_status': 1, 'i_port': 1999, 'i_index': 6} (test_func.py:97) [2012-02-12 18:09:53,819 pg_log]DEBUG: operate_sqlite3_tbl_product leaving... (test_func.py:101)
3、psql查看结果:
[root@kevin ~]# su - postgres [postgres@kevin ~]$ psql -U dyx1024 -d kevin_test psql (8.4.2) Type "help" for help. kevin_test=# \dt List of relations Schema | Name | Type | Owner --------+---------------+-------+---------------- public | tbl_product3 | table | dyx1024 public | tbl_test_port | table | pg_test_user_3 (2 rows) kevin_test=# select * from tbl_product3; i_index | sv_productname ---------+---------------- | apple (1 row) kevin_test=# select * from tbl_test_port; i_index | i_port | i_status ---------+--------+---------- 1 | 2 | 1 2 | 3 | 1 3 | 5 | 1 5 | 0 | 1 7 | 18 | 1 8 | 8 | 1 9 | 7 | 1 10 | 21 | 1 11 | 23 | 1 12 | 29 | 1 4 | 3000 | 1 6 | 1999 | 1 (12 rows) kevin_test=# \q [postgres@kevin ~]$

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

HaDIDB: Une base de données Python évolutive de haut niveau légère HaDIDB (HaDIDB) est une base de données légère écrite en Python, avec un niveau élevé d'évolutivité. Installez HaDIDB à l'aide de l'installation PIP: PiPinStallHaDIDB User Management Créer un utilisateur: CreateUser () pour créer un nouvel utilisateur. La méthode Authentication () authentifie l'identité de l'utilisateur. FromHadidb.OperationMportUserUser_OBJ = User ("Admin", "Admin") User_OBJ.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

MySQL Workbench peut se connecter à MARIADB, à condition que la configuration soit correcte. Sélectionnez d'abord "MariADB" comme type de connecteur. Dans la configuration de la connexion, définissez correctement l'hôte, le port, l'utilisateur, le mot de passe et la base de données. Lorsque vous testez la connexion, vérifiez que le service MARIADB est démarré, si le nom d'utilisateur et le mot de passe sont corrects, si le numéro de port est correct, si le pare-feu autorise les connexions et si la base de données existe. Dans une utilisation avancée, utilisez la technologie de mise en commun des connexions pour optimiser les performances. Les erreurs courantes incluent des autorisations insuffisantes, des problèmes de connexion réseau, etc. Lors des erreurs de débogage, analysez soigneusement les informations d'erreur et utilisez des outils de débogage. L'optimisation de la configuration du réseau peut améliorer les performances

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

La connexion MySQL peut être due aux raisons suivantes: le service MySQL n'est pas démarré, le pare-feu intercepte la connexion, le numéro de port est incorrect, le nom d'utilisateur ou le mot de passe est incorrect, l'adresse d'écoute dans my.cnf est mal configurée, etc. 2. Ajustez les paramètres du pare-feu pour permettre à MySQL d'écouter le port 3306; 3. Confirmez que le numéro de port est cohérent avec le numéro de port réel; 4. Vérifiez si le nom d'utilisateur et le mot de passe sont corrects; 5. Assurez-vous que les paramètres d'adresse de liaison dans My.cnf sont corrects.

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.
