跟老齐学Python之再深点,更懂list
list解析
先看下面的例子,这个例子是想得到1到9的每个整数的平方,并且将结果放在list中打印出来
>>> power2 = [] >>> for i in range(1,10): ... power2.append(i*i) ... >>> power2 [1, 4, 9, 16, 25, 36, 49, 64, 81]
python有一个非常有意思的功能,就是list解析,就是这样的:
>>> squares = [x**2 for x in range(1,10)] >>> squares [1, 4, 9, 16, 25, 36, 49, 64, 81]
看到这个结果,看官还不惊叹吗?这就是python,追求简洁优雅的python!
其官方文档中有这样一段描述,道出了list解析的真谛:
List comprehensions provide a concise way to create lists. Common applications are to make new lists where each element is the result of some operations applied to each member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.
还记得前面一讲中的那个问题吗?
找出100以内的能够被3整除的正整数。
我们用的方法是:
aliquot = [] for n in range(1,100): if n%3 == 0: aliquot.append(n) print aliquot
好了。现在用list解析重写,会是这样的:
>>> aliquot = [n for n in range(1,100) if n%3==0] >>> aliquot [3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]
震撼了。绝对牛X!
其实,不仅仅对数字组成的list,所有的都可以如此操作。请在平复了激动的心之后,默默地看下面的代码,感悟一下list解析的魅力。
>>> mybag = [' glass',' apple','green leaf '] #有的前面有空格,有的后面有空格 >>> [one.strip() for one in mybag] #去掉元素前后的空格 ['glass', 'apple', 'green leaf'] enumerate
这是一个有意思的内置函数,本来我们可以通过for i in range(len(list))的方式得到一个list的每个元素编号,然后在用list[i]的方式得到该元素。如果要同时得到元素编号和元素怎么办?就是这样了:
>>> for i in range(len(week)): ... print week[i]+' is '+str(i) #注意,i是int类型,如果和前面的用+连接,必须是str类型 ... monday is 0 sunday is 1 friday is 2
python中提供了一个内置函数enumerate,能够实现类似的功能
>>> for (i,day) in enumerate(week): ... print day+' is '+str(i) ... monday is 0 sunday is 1 friday is 2
算是一个有意思的内置函数了,主要是提供一个简单快捷的方法。
官方文档是这么说的:
代码如下:
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which supports iteration. The next() method of the iterator returned by enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over sequence:
顺便抄录几个例子,供看官欣赏,最好实验一下。
>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter'] >>> list(enumerate(seasons)) [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')] >>> list(enumerate(seasons, start=1)) [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]
在这里有类似(0,'Spring')这样的东西,这是另外一种数据类型,待后面详解。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Python fournit une variété de façons de télécharger des fichiers à partir d'Internet, qui peuvent être téléchargés sur HTTP à l'aide du package ULLIB ou de la bibliothèque de demandes. Ce tutoriel expliquera comment utiliser ces bibliothèques pour télécharger des fichiers à partir des URL de Python. Bibliothèque de demandes Les demandes sont l'une des bibliothèques les plus populaires de Python. Il permet d'envoyer des demandes HTTP / 1.1 sans ajouter manuellement les chaînes de requête aux URL ou le codage de formulaire de post-données. La bibliothèque des demandes peut remplir de nombreuses fonctions, notamment: Ajouter des données de formulaire Ajouter un fichier en plusieurs parties Accéder aux données de réponse Python Faire une demande tête

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Le traitement du langage naturel (PNL) est le traitement automatique ou semi-automatique du langage humain. La PNL est étroitement liée à la linguistique et a des liens vers la recherche en sciences cognitives, psychologie, physiologie et mathématiques. En informatique

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique
