使用yield可以做哪些很酷的事情?
使用生成器(Generator)和yield可以做哪些有趣的、酷酷的、让人意想不到的事情?
不限编程语言,例如python、JavaScript 等。
回复内容:
yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub,所以已经不是「让人意想不到」的东西了。理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) { return new Promise(function(resolve, reject) { var g = generator() function next(val) { var result = g.next(val) var value = result.value if (!result.done) { value.then(next).catch(reject) } else { resolve(value) } } next() }) }
不了解yield怎么实现async/await的,用C#代码试举一例:
IEnumerable<Action<Action>> SomeAsyncMethod() { //blabla yield return await( asyncMethod, context ); //blabla yield return await( asyncMethod, context ); //blabla }
<span class="c"># -*- coding: utf-8 -*-</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">matplotlib.animation</span> <span class="kn">as</span> <span class="nn">animation</span> <span class="kn">import</span> <span class="nn">math</span><span class="o">,</span> <span class="nn">random</span> <span class="c"># 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda</span> <span class="n">fig</span><span class="p">,</span> <span class="n">axes1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span> <span class="c"># 设置坐标轴长度</span> <span class="n">axes1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.4</span><span class="p">)</span> <span class="n">axes1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mf">0.01</span><span class="p">)</span> <span class="c"># 设置初始x、y数值数组</span> <span class="n">xdata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span> <span class="n">ydata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span> <span class="c"># 获得线条</span> <span class="n">line</span><span class="p">,</span> <span class="o">=</span> <span class="n">axes1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span> <span class="c"># 毛刺倍率,从0开始增长,offset越大毛刺越大</span> <span class="n">offset</span> <span class="o">=</span> <span class="mf">0.0</span> <span class="c">#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum</span> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">data</span><span class="p">):</span> <span class="k">global</span> <span class="n">offset</span> <span class="n">line</span><span class="o">.</span><span class="n">set_ydata</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="k">return</span> <span class="n">line</span><span class="p">,</span> <span class="c"># 每次生成10个随机数据</span> <span class="c"># 每次变化整幅图的话,yield一个整图就行了</span> <span class="k">def</span> <span class="nf">data_gen</span><span class="p">():</span> <span class="k">global</span> <span class="n">offset</span> <span class="k">while</span> <span class="bp">True</span><span class="p">:</span> <span class="n">length</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">))</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">)):</span> <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="o">+</span><span class="mf">0.2</span> <span class="k">if</span> <span class="n">i</span><span class="o">></span><span class="n">length</span><span class="o">/</span><span class="mf">18.0</span> <span class="ow">and</span> <span class="n">i</span><span class="o"><</span><span class="p">(</span><span class="n">length</span><span class="o">*</span><span class="mf">2.7</span><span class="o">/</span><span class="mf">6.0</span><span class="p">):</span> <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">+=</span><span class="n">offset</span><span class="o">*</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="n">offset</span> <span class="o">+=</span> <span class="mf">0.05</span> <span class="c">#可以设置offset的最大值</span> <span class="k">if</span> <span class="n">offset</span><span class="o">>=</span><span class="mf">0.5</span><span class="p">:</span> <span class="n">offset</span><span class="o">=</span><span class="mf">0.0</span> <span class="k">yield</span> <span class="n">ydata</span> <span class="c"># 配置完毕,开始播放</span> <span class="n">ani</span> <span class="o">=</span> <span class="n">animation</span><span class="o">.</span><span class="n">FuncAnimation</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">update</span><span class="p">,</span> <span class="n">data_gen</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">800</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛
当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...
酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。http://www.dabeaz.com 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">iter_funcs</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">):</span> <span class="sd">"""Train the model with `dataset` with mini-batch training. Each</span> <span class="sd"> mini-batch has `batch_size` recordings.</span> <span class="sd"> """</span> <span class="n">num_batches_train</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_train'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span> <span class="n">num_batches_valid</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_valid'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span> <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="mi">1</span><span class="p">):</span> <span class="n">batch_train_losses</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_train</span><span class="p">):</span> <span class="n">batch_train_loss</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'train'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span> <span class="n">batch_train_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_train_loss</span><span class="p">)</span> <span class="n">avg_train_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_train_losses</span><span class="p">)</span> <span class="n">batch_valid_losses</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">batch_valid_accuracies</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_valid</span><span class="p">):</span> <span class="n">batch_valid_loss</span><span class="p">,</span> <span class="n">batch_valid_accuracy</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'valid'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span> <span class="n">batch_valid_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_loss</span><span class="p">)</span> <span class="n">batch_valid_accuracies</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_accuracy</span><span class="p">)</span> <span class="n">avg_valid_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_losses</span><span class="p">)</span> <span class="n">avg_valid_accuracy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_accuracies</span><span class="p">)</span> <span class="k">yield</span> <span class="p">{</span> <span class="s">'number'</span><span class="p">:</span> <span class="n">epoch</span><span class="p">,</span> <span class="s">'train_loss'</span><span class="p">:</span> <span class="n">avg_train_loss</span><span class="p">,</span> <span class="s">'valid_loss'</span><span class="p">:</span> <span class="n">avg_valid_loss</span><span class="p">,</span> <span class="s">'valid_accuracy'</span><span class="p">:</span> <span class="n">avg_valid_accuracy</span><span class="p">,</span> <span class="p">}</span>

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

En ce qui concerne le problème de la suppression de l'interpréteur Python qui est livré avec des systèmes Linux, de nombreuses distributions Linux préinstalleront l'interpréteur Python lors de l'installation, et il n'utilise pas le gestionnaire de packages ...

Solution de problème de détection de type pylance Lorsque vous utilisez un décorateur personnalisé dans la programmation Python, le décorateur est un outil puissant qui peut être utilisé pour ajouter des lignes ...

À propos de Pythonasyncio ...

Utilisation de Python dans Linux Terminal ...

Chargement du fichier de cornichon dans Python 3.6 Erreur d'environnement: modulenotFounonError: NomoduLenamed ...

Problèmes de compatibilité entre les bibliothèques asynchrones Python dans Python, la programmation asynchrone est devenue le processus de concurrence élevée et d'E / S ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Le problème et la solution du processus enfant continuent d'exécuter lors de l'utilisation de signaux pour tuer le processus parent. Dans la programmation Python, après avoir tué le processus parent à travers des signaux, le processus de l'enfant est toujours ...
