Table des matières
回复内容:
Maison développement back-end Tutoriel Python 使用yield可以做哪些很酷的事情?

使用yield可以做哪些很酷的事情?

Jun 06, 2016 pm 04:23 PM
javascript python yield

使用生成器(Generator)和yield可以做哪些有趣的、酷酷的、让人意想不到的事情?
不限编程语言,例如python、JavaScript 等。

回复内容:

yield 在 JavaScript 中用的最多的可能就是结合 Promise/Thunk 等实现异步操作,比如大名鼎鼎的 tj/co · GitHub,所以已经不是「让人意想不到」的东西了。
理解 Generator 的特性后,实现一个玩具版的 co 还是很简单的:
function async(generator) {
  return new Promise(function(resolve, reject) {
    var g = generator()

    function next(val) {
      var result = g.next(val)
      var value = result.value

      if (!result.done) {
        value.then(next).catch(reject)
      }
      else {
        resolve(value)
      }
    }

    next()
  })
}
Copier après la connexion
最典型的不就是async/await么?


不了解yield怎么实现async/await的,用C#代码试举一例:

IEnumerable<Action<Action>> SomeAsyncMethod()
{
  //blabla
  yield return await( asyncMethod, context );

  //blabla
  yield return await( asyncMethod, context );

  //blabla
}
Copier après la connexion
可以做动画呀,效果如图:
<span class="c"># -*- coding: utf-8 -*-</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.animation</span> <span class="kn">as</span> <span class="nn">animation</span>
<span class="kn">import</span> <span class="nn">math</span><span class="o">,</span> <span class="nn">random</span>
<span class="c"># 需要安装的库:Numpy和Matplotlib,推荐直接Anaconda</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axes1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="c"># 设置坐标轴长度</span>
<span class="n">axes1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.4</span><span class="p">)</span>
<span class="n">axes1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mf">0.01</span><span class="p">)</span>
<span class="c"># 设置初始x、y数值数组</span>
<span class="n">xdata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
<span class="n">ydata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span>
<span class="c"># 获得线条</span>
<span class="n">line</span><span class="p">,</span> <span class="o">=</span> <span class="n">axes1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">xdata</span><span class="p">)</span>
<span class="c"># 毛刺倍率,从0开始增长,offset越大毛刺越大</span>
<span class="n">offset</span> <span class="o">=</span> <span class="mf">0.0</span>

<span class="c">#因为update的参数是调用函数data_gen,所以第一个默认参数不能是framenum</span>
<span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">data</span><span class="p">):</span>
    <span class="k">global</span> <span class="n">offset</span>
    <span class="n">line</span><span class="o">.</span><span class="n">set_ydata</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">line</span><span class="p">,</span>
<span class="c"># 每次生成10个随机数据</span>
<span class="c"># 每次变化整幅图的话,yield一个整图就行了</span>
<span class="k">def</span> <span class="nf">data_gen</span><span class="p">():</span>
    <span class="k">global</span> <span class="n">offset</span>
    <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
        <span class="n">length</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">xdata</span><span class="p">)):</span>
            <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">=</span><span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">xdata</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="o">+</span><span class="mf">0.2</span>
            <span class="k">if</span> <span class="n">i</span><span class="o">></span><span class="n">length</span><span class="o">/</span><span class="mf">18.0</span> <span class="ow">and</span> <span class="n">i</span><span class="o"><</span><span class="p">(</span><span class="n">length</span><span class="o">*</span><span class="mf">2.7</span><span class="o">/</span><span class="mf">6.0</span><span class="p">):</span>
                <span class="n">ydata</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">+=</span><span class="n">offset</span><span class="o">*</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">()</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span>
        <span class="n">offset</span> <span class="o">+=</span> <span class="mf">0.05</span>
        <span class="c">#可以设置offset的最大值</span>
        <span class="k">if</span> <span class="n">offset</span><span class="o">>=</span><span class="mf">0.5</span><span class="p">:</span>
           <span class="n">offset</span><span class="o">=</span><span class="mf">0.0</span>
        <span class="k">yield</span> <span class="n">ydata</span>
<span class="c"># 配置完毕,开始播放</span>
<span class="n">ani</span> <span class="o">=</span> <span class="n">animation</span><span class="o">.</span><span class="n">FuncAnimation</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">update</span><span class="p">,</span> <span class="n">data_gen</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">800</span><span class="p">,</span> <span class="n">repeat</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
Copier après la connexion
模拟离散事件,还有更简洁优雅的方式么

Overview — SimPy 3.0.8 documentation 这个问题就是给我准备的嘛

当有人声称在CPython里实现了一个沙盒的时候就可以用yield去逗他了,I was looking through the code and saw someone submitted this but didn't run it:...

酷到没工作... A Curious Course on Coroutines and Concurrency 可以写出一个并发的库
Generator Tricks for Systems Programmers 可以写个流处理框架 参见David Beazley大神几次PyCon的pdf,看完我简直是惊呆了。dabeaz.com 可以用来训练神经网络.
比如Lasagne/Lasagne · GitHub 中的一段示例代码:
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">iter_funcs</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">):</span>
    <span class="sd">"""Train the model with `dataset` with mini-batch training. Each</span>
<span class="sd">       mini-batch has `batch_size` recordings.</span>
<span class="sd">    """</span>
    <span class="n">num_batches_train</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_train'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span>
    <span class="n">num_batches_valid</span> <span class="o">=</span> <span class="n">dataset</span><span class="p">[</span><span class="s">'num_examples_valid'</span><span class="p">]</span> <span class="o">//</span> <span class="n">batch_size</span>

    <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="mi">1</span><span class="p">):</span>
        <span class="n">batch_train_losses</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_train</span><span class="p">):</span>
            <span class="n">batch_train_loss</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'train'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span>
            <span class="n">batch_train_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_train_loss</span><span class="p">)</span>

        <span class="n">avg_train_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_train_losses</span><span class="p">)</span>

        <span class="n">batch_valid_losses</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">batch_valid_accuracies</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches_valid</span><span class="p">):</span>
            <span class="n">batch_valid_loss</span><span class="p">,</span> <span class="n">batch_valid_accuracy</span> <span class="o">=</span> <span class="n">iter_funcs</span><span class="p">[</span><span class="s">'valid'</span><span class="p">](</span><span class="n">b</span><span class="p">)</span>
            <span class="n">batch_valid_losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_loss</span><span class="p">)</span>
            <span class="n">batch_valid_accuracies</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">batch_valid_accuracy</span><span class="p">)</span>

        <span class="n">avg_valid_loss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_losses</span><span class="p">)</span>
        <span class="n">avg_valid_accuracy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">batch_valid_accuracies</span><span class="p">)</span>

        <span class="k">yield</span> <span class="p">{</span>
            <span class="s">'number'</span><span class="p">:</span> <span class="n">epoch</span><span class="p">,</span>
            <span class="s">'train_loss'</span><span class="p">:</span> <span class="n">avg_train_loss</span><span class="p">,</span>
            <span class="s">'valid_loss'</span><span class="p">:</span> <span class="n">avg_valid_loss</span><span class="p">,</span>
            <span class="s">'valid_accuracy'</span><span class="p">:</span> <span class="n">avg_valid_accuracy</span><span class="p">,</span>
        <span class="p">}</span>
Copier après la connexion
tornado就是使用generator实现的协程(coroutine)模型,再配合event loop实现高并发的 使用迭代器遍历二叉树。
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'interprète Python peut-il être supprimé dans le système Linux? L'interprète Python peut-il être supprimé dans le système Linux? Apr 02, 2025 am 07:00 AM

En ce qui concerne le problème de la suppression de l'interpréteur Python qui est livré avec des systèmes Linux, de nombreuses distributions Linux préinstalleront l'interpréteur Python lors de l'installation, et il n'utilise pas le gestionnaire de packages ...

Comment résoudre le problème de la détection de type pylance des décorateurs personnalisés dans Python? Comment résoudre le problème de la détection de type pylance des décorateurs personnalisés dans Python? Apr 02, 2025 am 06:42 AM

Solution de problème de détection de type pylance Lorsque vous utilisez un décorateur personnalisé dans la programmation Python, le décorateur est un outil puissant qui peut être utilisé pour ajouter des lignes ...

Python 3.6 Chargement du fichier de cornichon MODULENOTFOUNDERROR: Que dois-je faire si je charge le fichier de cornichon '__builtin__'? Python 3.6 Chargement du fichier de cornichon MODULENOTFOUNDERROR: Que dois-je faire si je charge le fichier de cornichon '__builtin__'? Apr 02, 2025 am 06:27 AM

Chargement du fichier de cornichon dans Python 3.6 Erreur d'environnement: modulenotFounonError: NomoduLenamed ...

FastAPI et AIOHTTP partagent-ils la même boucle d'événements mondiaux? FastAPI et AIOHTTP partagent-ils la même boucle d'événements mondiaux? Apr 02, 2025 am 06:12 AM

Problèmes de compatibilité entre les bibliothèques asynchrones Python dans Python, la programmation asynchrone est devenue le processus de concurrence élevée et d'E / S ...

Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6? Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6? Apr 02, 2025 am 07:12 AM

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment s'assurer que le processus de l'enfant se termine également après avoir tué le processus parent via le signal dans Python? Comment s'assurer que le processus de l'enfant se termine également après avoir tué le processus parent via le signal dans Python? Apr 02, 2025 am 06:39 AM

Le problème et la solution du processus enfant continuent d'exécuter lors de l'utilisation de signaux pour tuer le processus parent. Dans la programmation Python, après avoir tué le processus parent à travers des signaux, le processus de l'enfant est toujours ...

See all articles