希望用flask作为中介让python和js交互,大家有什么比较好的实践经验没?
我试过了getjson之类的是可以的但是比较怀疑数据量大的话用什么比较好啊?记得见过有人是pandas+d3.js+flask用的,不过找不到了
回复内容:
无邀自答,只因为在我主页的信息流里面多看了你一眼。。。。这话题选得各种切中我的要害啊。
我是勤劳的搬运工。
Getting Your Python Data Onto Browser介绍了如何将你的python数据弄到浏览器里面。所以其实JSON才是python和js的中介,Flask框架只是帮你简单的建立一个JSON服务器而已,连RESTfull都谈不上,如果你只是用来可视化的话。当然你也可以实现增修改删的RESTful服务。同理,你也可以用Tornado,也许它的性能更好。
我假定是一个动态的服务,那么Panda的DataFrame可以帮你快速地处理数据,Playing with REALTIME data, Python and D3和Data visualization using D3.js and Flask都有介绍相关的细节。
功能实现后,你所关心的可能是性能问题。我觉得大多数还不太会需要这方面的担忧。最烦人的可能是开发和可维护性。当然如果关心性能,你也可以在你功能完善的情况下,考虑服务器的优化,引入cache服务,服务器平衡等等,我觉得这不是你关心的。
此外,强烈推荐数据可视化控,可以试试ipython notebook. 这篇Visualizing a NetworkX graph in the IPython notebook with d3.js可能会让你强烈地喜欢上ipython notebook.
新手的个人经验:比如现在我们要将一个数据从Javascript传输到Flask, 进行处理后再传回Javascript. 我们可以使用jQuery中的getJSON, 并将数据转化为String后进行传输.
Javascript + jQuery:
<span class="nx">mydata</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"msg"</span><span class="p">,</span> <span class="s2">"Hello Flask."</span><span class="p">};</span> <span class="c1">// 要传输的数据</span> <span class="nx">$</span><span class="p">.</span><span class="nx">getJSON</span><span class="p">(</span><span class="s1">'/dataconvector'</span><span class="p">,</span> <span class="p">{</span> <span class="c1">// Flask中获取数据的function的url</span> <span class="nx">mykey</span><span class="o">:</span> <span class="nx">JSON</span><span class="p">.</span><span class="nx">stringify</span><span class="p">(</span><span class="nx">mydata</span><span class="p">)</span> <span class="c1">// 定义一个keyword, 将数据stringify</span> <span class="p">},</span> <span class="kd">function</span><span class="p">(</span><span class="nx">data</span><span class="p">)</span> <span class="p">{</span> <span class="c1">// 从Flask返回的数据</span> <span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="nx">data</span><span class="p">.</span><span class="nx">result</span><span class="p">);</span> <span class="nx">$</span><span class="p">(</span> <span class="s2">"#result"</span> <span class="p">).</span><span class="nx">text</span><span class="p">(</span><span class="nx">data</span><span class="p">.</span><span class="nx">result</span><span class="p">);</span> <span class="p">}</span> <span class="p">);</span>
另外推荐神器 GitHub - brython-dev/brython: Brython (Browser Python) is an implementation of Python 3 running in the browser
bottle-websocket flask-socketio, 相当简单易用
https://flask-socketio.readthedocs.org/en/latest/ 入门上手的话推荐看这本:
Data Visualization with Python and JavaScript - O'Reilly Media 推荐一个Github上面的开源项目,Caravel(GitHub - airbnb/caravel: Caravel is a data exploration platform designed to be visual, intuitive, and interactive),我正在学习和研究它 在flask这个包里有jsonify这个方法,可以return这个方法的返回值,在js那边接受为json。
除此之外,还可以使用jinja过滤器,在html上将字典转化为js可以读取的格式。字符串就不必了。
参考我的博客
http://www.cnblogs.com/lewis617/p/5184621.html 用Flask搭建一个RESTful服务,以JSON作为数据接口,这样前台就能获取后台的数据。 tornado + websocket 也是一个选择,格式 json 比较方便。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel d'installation de Pandas : analyse des erreurs d'installation courantes et de leurs solutions, des exemples de code spécifiques sont requis Introduction : Pandas est un puissant outil d'analyse de données largement utilisé dans le nettoyage des données, le traitement des données et la visualisation des données, il est donc très respecté dans le domaine de la science des données. Cependant, en raison de problèmes de configuration de l'environnement et de dépendances, vous pouvez rencontrer des difficultés et des erreurs lors de l'installation de pandas. Cet article vous fournira un didacticiel d'installation de pandas et analysera certaines erreurs d'installation courantes et leurs solutions. 1. Installez les pandas

Comment utiliser pandas pour lire correctement les fichiers txt nécessite des exemples de code spécifiques. Pandas est une bibliothèque d'analyse de données Python largement utilisée. Elle peut être utilisée pour traiter une variété de types de données, notamment des fichiers CSV, des fichiers Excel, des bases de données SQL, etc. En même temps, il peut également être utilisé pour lire des fichiers texte, tels que des fichiers txt. Cependant, lors de la lecture de fichiers txt, nous rencontrons parfois quelques problèmes, comme des problèmes d'encodage, des problèmes de délimiteur, etc. Cet article explique comment lire correctement le txt à l'aide de pandas.

En partant de zéro, je vais vous apprendre étape par étape comment installer Flask et créer rapidement un blog personnel. En tant que personne qui aime écrire, il est très important d'avoir un blog personnel. En tant que framework Web Python léger, Flask peut nous aider à créer rapidement un blog personnel simple et entièrement fonctionnel. Dans cet article, je vais repartir de zéro et vous apprendre étape par étape comment installer Flask et créer rapidement un blog personnel. Étape 1 : Installer Python et pip Avant de commencer, nous devons d'abord installer Python et pi

Conseils pratiques pour lire les fichiers txt à l'aide de pandas, des exemples de code spécifiques sont requis Dans l'analyse et le traitement des données, les fichiers txt sont un format de données courant. L'utilisation de pandas pour lire les fichiers txt permet un traitement des données rapide et pratique. Cet article présentera plusieurs techniques pratiques pour vous aider à mieux utiliser les pandas pour lire les fichiers txt, ainsi que des exemples de code spécifiques. Lire des fichiers txt avec des délimiteurs Lorsque vous utilisez pandas pour lire des fichiers txt avec des délimiteurs, vous pouvez utiliser read_c

La technologie de détection et de reconnaissance des visages est déjà une technologie relativement mature et largement utilisée. Actuellement, le langage d'application Internet le plus utilisé est JS. La mise en œuvre de la détection et de la reconnaissance faciale sur le front-end Web présente des avantages et des inconvénients par rapport à la reconnaissance faciale back-end. Les avantages incluent la réduction de l'interaction réseau et de la reconnaissance en temps réel, ce qui réduit considérablement le temps d'attente des utilisateurs et améliore l'expérience utilisateur. Les inconvénients sont les suivants : il est limité par la taille du modèle et la précision est également limitée ; Comment utiliser js pour implémenter la détection de visage sur le web ? Afin de mettre en œuvre la reconnaissance faciale sur le Web, vous devez être familier avec les langages et technologies de programmation associés, tels que JavaScript, HTML, CSS, WebRTC, etc. Dans le même temps, vous devez également maîtriser les technologies pertinentes de vision par ordinateur et d’intelligence artificielle. Il convient de noter qu'en raison de la conception du côté Web

Django et Flask sont tous deux leaders dans les frameworks Web Python, et ils ont tous deux leurs propres avantages et scénarios applicables. Cet article procédera à une analyse comparative de ces deux frameworks et fournira des exemples de code spécifiques. Introduction au développement Django est un framework Web complet, son objectif principal est de développer rapidement des applications Web complexes. Django fournit de nombreuses fonctions intégrées, telles que ORM (Object Relational Mapping), formulaires, authentification, backend de gestion, etc. Ces fonctionnalités permettent à Django de gérer de grandes

Tutoriel d'installation du framework Flask : vous apprendrez étape par étape comment installer correctement le framework Flask. Des exemples de code spécifiques sont requis. Introduction : Flask est un framework de développement Web Python simple et flexible. Il est facile à apprendre, facile à utiliser et doté de fonctionnalités puissantes. Cet article vous guidera étape par étape pour installer correctement le framework Flask et fournira des exemples de code détaillés pour référence. Étape 1 : installer Python Avant d'installer le framework Flask, vous devez d'abord vous assurer que Python est installé sur votre ordinateur. Vous pouvez commencer à partir de P

Le secret de la méthode de déduplication Pandas : un moyen rapide et efficace de dédupliquer les données, qui nécessite des exemples de code spécifiques. Dans le processus d'analyse et de traitement des données, une duplication des données est souvent rencontrée. Les données en double peuvent induire en erreur les résultats de l'analyse, la déduplication est donc une étape très importante. Pandas, une puissante bibliothèque de traitement de données, fournit une variété de méthodes pour réaliser la déduplication des données. Cet article présentera certaines méthodes de déduplication couramment utilisées et joindra des exemples de code spécifiques. Le cas le plus courant de déduplication basée sur une seule colonne dépend de la duplication ou non de la valeur d'une certaine colonne.
