


Exemple de technologie de délégation d'événements JavaScript Analysis_Javascript skills
Cet article analyse la technologie de délégation d'événements JavaScript avec des exemples. Partagez-le avec tout le monde pour votre référence. L'analyse spécifique est la suivante :
S'il y a un grand nombre de boutons dans une page entière, nous devons lier des gestionnaires d'événements à chaque bouton. Cela affectera les performances.
Tout d'abord, chaque fonction est un objet, et l'objet occupera beaucoup de mémoire. Plus il y a d'objets dans la mémoire, plus les performances sont mauvaises
.Deuxièmement, une augmentation du nombre de visites DOM entraînera un retard dans le chargement des pages. En fait, il existe encore de bonnes solutions pour faire bon usage des gestionnaires d'événements.
Délégué à l'événement :
La solution au problème du trop grand nombre de gestionnaires d'événements est la technologie de délégation d'événements.
La technologie de délégation d'événements tire parti du bouillonnement d'événements.
Nous pouvons lier les gestionnaires d'événements à un élément parent qui doit déclencher un événement.
<ul id="mylist"> <li id="li_1">sdsdsd</li> <li id="li_2">sdsdsd</li> <li id="li_3">sdsdsd</li> </ul>
Maintenant, nous devons lier les gestionnaires d'événements pour ces 3 Li..
Il suffit de lier le gestionnaire d'événements dans ul.
obj.eventHandler($("mylist"),"click",function(e){ e = e || window.event; switch(e.target.id){ //大家应该还记得target是事件目标, //只要点击了事件的目标元素就会弹出相应的alert. case "li_1": alert("li_1"); break; case "li_2": alert("li_2"); break; case "li_3": alert("li_3"); break } })
S'il s'agit d'une application web complexe, ce type de délégation d'événements est très pratique.
Si vous n'utilisez pas cette méthode, les lier un par un entraînera d'innombrables gestionnaires d'événements.
J'espère que cet article sera utile à la conception de la programmation JavaScript de chacun.

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.

Écrit ci-dessus & La compréhension personnelle de l'auteur est que la reconstruction 3D basée sur l'image est une tâche difficile qui implique de déduire la forme 3D d'un objet ou d'une scène à partir d'un ensemble d'images d'entrée. Les méthodes basées sur l’apprentissage ont attiré l’attention pour leur capacité à estimer directement des formes 3D. Cet article de synthèse se concentre sur les techniques de reconstruction 3D de pointe, notamment la génération de nouvelles vues inédites. Un aperçu des développements récents dans les méthodes d'éclaboussure gaussienne est fourni, y compris les types d'entrée, les structures de modèle, les représentations de sortie et les stratégies de formation. Les défis non résolus et les orientations futures sont également discutés. Compte tenu des progrès rapides dans ce domaine et des nombreuses opportunités d’améliorer les méthodes de reconstruction 3D, un examen approfondi de l’algorithme semble crucial. Par conséquent, cette étude fournit un aperçu complet des progrès récents en matière de diffusion gaussienne. (Faites glisser votre pouce vers le haut

jQuery est une bibliothèque JavaScript populaire qui peut être utilisée pour simplifier la manipulation du DOM, la gestion des événements, les effets d'animation, etc. Dans le développement Web, nous rencontrons souvent des situations dans lesquelles nous devons modifier la liaison d'événements sur des éléments sélectionnés. Cet article explique comment utiliser jQuery pour lier des événements de modification d'éléments sélectionnés et fournit des exemples de code spécifiques. Tout d'abord, nous devons créer un menu déroulant avec des options utilisant des étiquettes :

Le modèle GPT-4o publié par OpenAI constitue sans aucun doute une énorme avancée, notamment dans sa capacité à traiter plusieurs supports d'entrée (texte, audio, images) et à générer la sortie correspondante. Cette capacité rend l’interaction homme-machine plus naturelle et intuitive, améliorant considérablement l’aspect pratique et la convivialité de l’IA. Plusieurs points forts de GPT-4o incluent : une évolutivité élevée, des entrées et sorties multimédias, de nouvelles améliorations des capacités de compréhension du langage naturel, etc. 1. Entrée/sortie multimédia : GPT-4o+ peut accepter n'importe quelle combinaison de texte, d'audio et d'images en entrée et générer directement une sortie à partir de ces médias. Cela brise les limites des modèles d’IA traditionnels qui ne traitent qu’un seul type d’entrée, rendant ainsi l’interaction homme-machine plus flexible et plus diversifiée. Cette innovation contribue à alimenter les assistants intelligents

Combinaison de Golang et de la technologie front-end : pour explorer le rôle de Golang dans le domaine front-end, des exemples de code spécifiques sont nécessaires. Avec le développement rapide d'Internet et des applications mobiles, la technologie front-end est devenue de plus en plus importante. Dans ce domaine, Golang, en tant que puissant langage de programmation back-end, peut également jouer un rôle important. Cet article explorera comment Golang est combiné avec la technologie front-end et démontrera son potentiel dans le domaine front-end à travers des exemples de code spécifiques. Le rôle de Golang dans le domaine front-end est celui d'un outil efficace, concis et facile à apprendre.
