Cours Intermédiaire 11459
Introduction au cours:"Tutoriel vidéo d'auto-apprentissage sur l'équilibrage de charge Linux du réseau informatique" implémente principalement l'équilibrage de charge Linux en effectuant des opérations de script sur le Web, lvs et Linux sous nagin.
Cours Avancé 17742
Introduction au cours:"Tutoriel vidéo Shang Xuetang MySQL" vous présente le processus depuis l'installation jusqu'à l'utilisation de la base de données MySQL, et présente en détail les opérations spécifiques de chaque lien.
Cours Avancé 11447
Introduction au cours:« Tutoriel vidéo d'affichage d'exemples front-end de Brothers Band » présente des exemples de technologies HTML5 et CSS3 à tout le monde, afin que chacun puisse devenir plus compétent dans l'utilisation de HTML5 et CSS3.
Il avait été promis que la formation ne fournirait pas de modèles, mais les avez-vous fournis ? ? ?
2018-02-06 23:02:18 0 2 1346
python - Est-il nécessaire d'activer des variables discrètes dans un modèle arborescent?
2017-05-18 10:46:59 0 1 878
2017-06-28 09:23:45 0 1 1137
python - Comment sklearn forme des ensembles de données à grande échelle
2017-06-28 09:22:17 0 3 1147
2018-09-07 10:49:47 0 6 1498
Introduction au cours:Avec le développement de l'intelligence artificielle et de l'apprentissage profond, les modèles de pré-formation sont devenus une technologie populaire dans le traitement du langage naturel (NLP), la vision par ordinateur (CV), la reconnaissance vocale et d'autres domaines. En tant que l'un des langages de programmation les plus populaires à l'heure actuelle, Python joue naturellement un rôle important dans l'application de modèles pré-entraînés. Cet article se concentrera sur le modèle de pré-formation d'apprentissage profond en Python, y compris sa définition, ses types, ses applications et comment utiliser le modèle de pré-formation. Qu'est-ce qu'un modèle pré-entraîné ? La principale difficulté des modèles d’apprentissage profond est d’analyser un grand nombre de données de haute qualité.
2023-06-11 commentaire 0 2020
Introduction au cours:Après être entrés dans l’ère de la pré-formation, les performances des modèles de reconnaissance visuelle se sont développées rapidement, mais les modèles de génération d’images, tels que les réseaux contradictoires génératifs (GAN), semblent avoir pris du retard. Habituellement, la formation GAN est effectuée à partir de zéro, de manière non supervisée, ce qui prend du temps et demande beaucoup de travail. Les « connaissances » acquises grâce au Big Data lors d'une pré-formation à grande échelle ne sont pas utilisées. De plus, la génération d'images elle-même doit être capable de capturer et de simuler des données statistiques complexes dans des phénomènes visuels du monde réel, sinon les images générées ne seront pas conformes aux lois du monde physique et seront directement identifiées comme « fausses » d'un seul coup d'œil. . Le modèle pré-entraîné fournit des connaissances et le modèle GAN fournit des capacités de génération. La combinaison des deux peut être une belle chose ! La question est de savoir quels modèles pré-entraînés et comment les combiner peuvent améliorer la capacité de génération du modèle GAN.
2023-05-11 commentaire 0 1480
Introduction au cours:La formation d'un modèle ML en C++ implique les étapes suivantes : Prétraitement des données : charger, transformer et concevoir les données. Formation de modèle : choisissez un algorithme et entraînez le modèle. Validation du modèle : partitionnez l'ensemble de données, évaluez les performances et ajustez le modèle. En suivant ces étapes, vous pouvez réussir à créer, entraîner et valider des modèles d’apprentissage automatique en C++.
2024-06-01 commentaire 0 666
Introduction au cours:L'importance du prétraitement des données dans la formation des modèles et exemples de code spécifiques Introduction : Dans le processus de formation des modèles d'apprentissage automatique et d'apprentissage profond, le prétraitement des données est un lien très important et essentiel. Le but du prétraitement des données est de transformer les données brutes en une forme adaptée à la formation du modèle grâce à une série d'étapes de traitement visant à améliorer les performances et la précision du modèle. Cet article vise à discuter de l'importance du prétraitement des données dans la formation de modèles et à donner quelques exemples de code de prétraitement des données couramment utilisés. 1. L'importance du prétraitement des données Nettoyage des données Le nettoyage des données est la
2023-10-08 commentaire 0 1294
Introduction au cours:1. Contexte Après l'émergence de grands modèles tels que GPT, la méthode de modélisation autorégressive Transformer + du modèle de langage, qui est la tâche de pré-entraînement consistant à prédire le prochain jeton, a remporté un grand succès. Alors, cette méthode de modélisation autorégressive peut-elle obtenir de meilleurs résultats dans les modèles visuels ? L'article présenté aujourd'hui est un article récemment publié par Apple sur la formation d'un modèle visuel basé sur la pré-formation Transformer + autorégressive. Laissez-moi vous présenter ce travail. Titre de l'article : ScalablePre-trainingofLargeAutoregressiveImageModels Adresse de téléchargement : https://ar
2024-01-29 commentaire 0 1022