Cours Intermédiaire 11382
Introduction au cours:"Tutoriel vidéo d'auto-apprentissage sur l'équilibrage de charge Linux du réseau informatique" implémente principalement l'équilibrage de charge Linux en effectuant des opérations de script sur le Web, lvs et Linux sous nagin.
Cours Avancé 17695
Introduction au cours:"Tutoriel vidéo Shang Xuetang MySQL" vous présente le processus depuis l'installation jusqu'à l'utilisation de la base de données MySQL, et présente en détail les opérations spécifiques de chaque lien.
Cours Avancé 11394
Introduction au cours:« Tutoriel vidéo d'affichage d'exemples front-end de Brothers Band » présente des exemples de technologies HTML5 et CSS3 à tout le monde, afin que chacun puisse devenir plus compétent dans l'utilisation de HTML5 et CSS3.
python - Est-il nécessaire d'activer des variables discrètes dans un modèle arborescent?
2017-05-18 10:46:59 0 1 870
python - Comment sklearn forme des ensembles de données à grande échelle
2017-06-28 09:22:17 0 3 1137
2017-06-28 09:23:45 0 1 1134
python - Référence de clé étrangère du modèle Django
2017-05-18 10:46:04 0 1 627
Introduction au cours:Présentation de l'utilisation de Python pour entraîner des modèles sur des images : dans le domaine de la vision par ordinateur, l'utilisation de modèles d'apprentissage profond pour classer les images, la détection de cibles et d'autres tâches est devenue une méthode courante. En tant que langage de programmation largement utilisé, Python fournit une multitude de bibliothèques et d'outils, ce qui rend relativement facile l'entraînement de modèles sur des images. Cet article expliquera comment utiliser Python et ses bibliothèques associées pour entraîner des modèles sur des images et fournira des exemples de code correspondants. Préparation de l'environnement : Avant de commencer, vous devez vous assurer que vous avez installé
2023-08-26 commentaire 0 1647
Introduction au cours:Introduction à la question du temps de formation des modèles d'apprentissage profond : Avec le développement du deep learning, les modèles d'apprentissage profond ont obtenu des résultats remarquables dans divers domaines. Cependant, le temps de formation des modèles d’apprentissage profond est un problème courant. Dans le cas d’ensembles de données à grande échelle et de structures de réseau complexes, le temps de formation des modèles d’apprentissage profond augmente considérablement. Cet article abordera le problème du temps de formation des modèles d'apprentissage profond et donnera des exemples de code spécifiques. L'informatique parallèle accélère le temps de formation Le processus de formation des modèles d'apprentissage profond nécessite généralement une grande quantité de ressources informatiques et de temps. Afin d'accélérer la formation
2023-10-09 commentaire 0 1736
Introduction au cours:Guide de formation du modèle ChatGPTPython : Aperçu des étapes de personnalisation des robots de chat : Ces dernières années, avec le développement croissant de la technologie NLP (traitement du langage naturel), les robots de chat ont attiré de plus en plus d'attention. ChatGPT d'OpenAI est un puissant modèle de langage pré-entraîné qui peut être utilisé pour créer des chatbots multi-domaines. Cet article présentera les étapes d'utilisation de Python pour entraîner le modèle ChatGPT, y compris la préparation des données, la formation du modèle et la génération d'échantillons de dialogue. Étape 1 : Préparation, collecte et nettoyage des données
2023-10-24 commentaire 0 1324
Introduction au cours:La formation d'un modèle ML en C++ implique les étapes suivantes : Prétraitement des données : charger, transformer et concevoir les données. Formation de modèle : choisissez un algorithme et entraînez le modèle. Validation du modèle : partitionnez l'ensemble de données, évaluez les performances et ajustez le modèle. En suivant ces étapes, vous pouvez réussir à créer, entraîner et valider des modèles d’apprentissage automatique en C++.
2024-06-01 commentaire 0 652
Introduction au cours:Le framework Java peut accélérer la formation des modèles d'intelligence artificielle en : utilisant TensorFlowServing pour déployer des modèles pré-entraînés pour une inférence rapide ; en utilisant H2OAIDriverlessAI pour automatiser le processus de formation et en utilisant l'informatique distribuée pour réduire le temps de formation en utilisant SparkMLlib pour mettre en œuvre une formation distribuée et des données à grande échelle ; sur le traitement des ensembles d'architecture Apache Spark.
2024-06-04 commentaire 0 903