Comment échanger le contenu de différents conteneurs dans une application Dash ?
P粉378890106
P粉378890106 2024-02-26 22:35:55
0
1
540

J'ai beaucoup de difficulté à faire ce qui suit. J'ai une application Dash formatée en CSS pour l'afficher dans différents conteneurs. Le conteneur intitulé « hexgrid-1-container » est le plus grand conteneur, tandis que les autres conteneurs sont plus petits et organisés autour de lui. Je souhaite mettre à jour mon application Dash afin que chaque fois que je clique sur une figure/un graphique dans un autre conteneur, il apparaisse dans "hexgrid-1-container" alors que la figure précédente était dans "hexgrid-1-container". Les conteneurs apparaîtront dans des conteneurs plus petits. .

J'ai une application de tableau de bord comme celle-ci :

import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
from jupyter_dash import JupyterDash
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import sqlite3
import locale
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px

# Set the locale for formatting
locale.setlocale(locale.LC_ALL, '')
app = dash.Dash(__name__)
app.layout = html.Div(className= 'container glass', children=[
    html.Div(className='hexgrid-1-container', style={'border': '1px solid black'}, children=[
        dcc.Graph(id='hexgrid-1', style={"height": "75%", "width": "100%"}, className='hexgrid1')
    ]),

    html.Div(className='hexgrid-2-container', style={'border': '1px solid black'}, children=[
        dcc.Graph(id='hexgrid-2', style={"height": "100%", "width": "100%"}, className='hexgrid2')
    ]),

    html.Div(className='base-plot-container', style={'border': '1px solid black'}, children=[
        dcc.Graph(id='base-plot', style={"height": "100%", "width": "100%"})
    ]),

    html.Div(className='us-map-container', style={'border': '1px solid black'}, children=[
        dcc.Graph(id='us-map-graph', style={"height": "100%", "width": "100%"})
    ]),

    html.Div(className='fifth-container', style={'border': '1px solid black'}, children=[
        # dcc.Graph(id='us-map-graph', style={"height": "100%", "width": "100%"})
        #html.H2("5th Container")
    ]),

    html.Div(className='sixth-container', style={'border': '1px solid black'}, children=[
        # dcc.Graph(id='us-map-graph', style={"height": "100%", "width": "100%"})
        #html.H2("6th Container")
    ])
])


@app.callback(
    Output('hexgrid-1', 'figure'),
    Input('hexgrid-1', 'id')
)

def render_hexgrid_1(_):
    # Open a new database connection
    conn = sqlite3.connect(r"C:\Users\HituJani\Downloads\txns.db")
    
    # Fetching all columns in the transactions table
    query = '''
        PRAGMA table_info(transactions)
    '''
    
    # Fetch data
    data = pd.read_sql_query(query, conn)
    
    # Filtering out the relevant columns, this step can be skipped if you want all columns.
    relevant_columns = data[data['name'].isin(['TranType', 'MessageTypeIdentifier', 'MerchantType', 'IResponseCode'])]
    
    # Creating the hex grid with column names
    plot_data = go.Scatter(x=relevant_columns.index, y=relevant_columns['name'], text=relevant_columns['name'],
                           marker=dict(symbol='hexagon', size=30), mode='markers+text')
    layout = go.Layout(title="Select a Category")
    return go.Figure(data=[plot_data], layout=layout)
@app.callback(
    Output('hexgrid-2', 'figure'),
    Output('hexgrid-2', 'style'),
    Input('hexgrid-1', 'clickData')
)
def render_hexgrid_2(clickData):
    # Open a new database connection
    conn = sqlite3.connect(r"C:\Users\HituJani\Downloads\txns.db")
    
    if clickData is None:
        return go.Figure(), {"display": "none"}
    else:
        category = clickData['points'][0]['text']
        
        # Fetching all columns in the transactions table
        query = '''
            PRAGMA table_info(transactions)
        '''
        
        # Fetch data
        data = pd.read_sql_query(query, conn)
        
        # Filtering out the relevant numerical features columns
        relevant_columns = data[data['name'].isin(['TransactionAmount', 'OutstandingAmount', 'CurrentBalance', 'TotalOutStgAuthAmt'])]
        
        # Generating random points on the surface of a sphere
        phi = np.random.uniform(0, np.pi, len(relevant_columns))
        theta = np.random.uniform(0, 2*np.pi, len(relevant_columns))
        
        x = np.cos(theta) * np.sin(phi)
        y = np.sin(theta) * np.sin(phi)
        z = np.cos(phi)
        
        # Create a 3D scatter plot with sphere markers
        scatter = go.Scatter3d(
            x=x,
            y=y,
            z=z,
            mode='markers+text',
            marker=dict(
                size=12,
                color=np.arange(len(relevant_columns)),
                colorscale='Viridis',
                symbol='circle',
                opacity=0.8
            ),
            text=relevant_columns['name'],
            hoverinfo='text'
        )
        
        # Create a wireframe sphere using a mesh
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x_sphere = np.outer(np.cos(u), np.sin(v))
        y_sphere = np.outer(np.sin(u), np.sin(v))
        z_sphere = np.outer(np.ones(np.size(u)), np.cos(v))
        
        sphere = go.Mesh3d(x=x_sphere.ravel(),
                           y=y_sphere.ravel(),
                           z=z_sphere.ravel(),
                           opacity=0.1,
                           color='cyan')
        
        # Combine the scatter plot and wireframe into a single figure
        fig = go.Figure(data=[scatter, sphere])
        
        fig.update_layout(
            margin=dict(l=0, r=0, b=0, t=0),
            scene=dict(
                xaxis=dict(title=None, visible=False),
                yaxis=dict(title=None, visible=False),
                zaxis=dict(title=None, visible=False),
            ),
            template='plotly_dark'
        )
        
        return fig, {"height": "50vh", "width": "100%", "display": "inline-block"}
# Define the callback function that will update the plot, highlight the sphere and enable drilling down
@app.callback(
    Output('base-plot', 'figure'),
    Input('hexgrid-2', 'clickData'),
    State('hexgrid-1', 'clickData')
)
def update_base_plot(clickData_hexgrid_2, clickData_hexgrid_1):
    try:
        # Open a new database connection
        conn = sqlite3.connect(r"C:\Users\HituJani\Downloads\txns.db")

        category = clickData_hexgrid_1['points'][0]['text']
        numerical_feature = clickData_hexgrid_2['points'][0]['text']

        # SQL query to retrieve aggregated data based on selected category and numerical feature
        query = f'''
            SELECT {category}, WeekOfMonth, SUM({numerical_feature}) AS TotalAmount
            FROM transactions
            GROUP BY {category}, WeekOfMonth
            ORDER BY TotalAmount DESC
        '''

        # Fetch the data from the database
        df_base = pd.read_sql(query, conn)

        # Close the database connection
        conn.close()

        # Formatting the Total column
        df_base['TotalAmount'] = df_base['TotalAmount'].apply(lambda x: locale.currency(x, grouping=True))

        # Creating 3D scatter plot with sphere markers
        fig = go.Figure()

        # Define colorscale for WeekOfMonth values
        colorscale = [
            [0, 'blue'],        # Week 1: Blue
            [0.25, 'purple'],   # Week 2: Purple
            [0.5, 'darkorange'],   # Week 3: Dark Orange
            [0.75, 'yellow'],   # Week 4: Yellow
            [1, 'pink']         # Week 5: Pink
        ]

        # Add the scatter plot trace
        fig.add_trace(
            go.Scatter3d(
                x=df_base[category],
                y=df_base['WeekOfMonth'].astype(int),
                z=df_base['TotalAmount'],
                mode='markers+text',
                marker=dict(
                    size=5,  # Adjust the size of markers to make them smaller
                    symbol='circle',  # Use 'circle' symbol for spheres
                    color=df_base['WeekOfMonth'],
                    colorscale=colorscale,
                ),
                textposition='top center',
                hovertemplate=(
                    f"<b>{category}</b>: %{{x}}<br>" +
                    "<b>Total Amount</b>: %{z}<br>" +
                    "<b>WeekOfMonth</b>: %{y}<br>"
                )
            )
        )

        # Dynamically set y-axis range
        y_max = df_base['WeekOfMonth'].max()

        fig.update_layout(
            scene=dict(
                xaxis=dict(
                    title=category,
                    title_font=dict(size=14, color='darkorange'),
                    visible=False  # Hide the x-axis
                ),
                yaxis=dict(
                    title='Week of Month',
                    title_font=dict(size=14, color='purple'),
                    tickmode='array',
                    tickvals=[0.5, 1.5, 2.5, 3.5, 4.5, 5.5],
                    ticktext=['1', '2', '3', '4', '5'],  # Display tick labels as 1, 2, 3, 4, 5],
                    visible=False  # Hide the y-axis
                ),
                zaxis=dict(
                    title=f'Total {numerical_feature} ($)',
                    title_font=dict(size=14, color='yellow'),
                    autorange='reversed',
                    visible=False  # Hide the z-axis
                ),
            ),
            xaxis=dict(
                type='category',
                tickmode='linear',
                tickangle=45,
                automargin=True,
                visible=False  # Hide the x-axis labels
            ),
            margin=dict(l=10, r=10, t=10, b=10),  # Increase the b value to enlarge the viewing window
            template='plotly_dark',
        )

        return fig

    except Exception as e:
        print(f"Error: {e}")
        return go.Figure()


@app.callback(
    Output('us-map-graph', 'figure'),
    Output('us-map-graph', 'style'),
    Input('base-plot', 'clickData'),
    State('hexgrid-1', 'clickData'),
    State('hexgrid-2', 'clickData')
)
def display_transaction_amount(base_plot_click_data, hexgrid_1_clickData, hexgrid_2_clickData):
    try:
        # Check if data from hexgrid-1 and hexgrid-2 is available
        if hexgrid_1_clickData is None or hexgrid_2_clickData is None:
            # Return an empty figure and hide the map
            return go.Figure(), {"display": "none"}

        # Get the selected category from hexgrid-1 and numerical feature from hexgrid-2
        selected_category = hexgrid_1_clickData['points'][0]['text']
        numerical_feature = hexgrid_2_clickData['points'][0]['text']

        # Get the selected subcategory from base_plot_click_data
        selected_subcategory = None
        if base_plot_click_data is not None:
            selected_subcategory = base_plot_click_data['points'][0]['x']

        # Open a new database connection
        conn = sqlite3.connect(r"C:\Users\HituJani\Downloads\txns.db")

        # SQL query to retrieve transaction data by state for the selected category, subcategory, and numerical feature
        query = f'''
            SELECT StateCode, {selected_category}, SUM({numerical_feature}) AS TotalTransactionAmount
            FROM transactions
            WHERE {selected_category} = ?
            GROUP BY StateCode, {selected_category}
        '''

        # Execute the query and fetch the results into a DataFrame
        state_data = pd.read_sql(query, conn, params=(selected_subcategory,))

        # Close the database connection
        conn.close()

        # Create a Choropleth map using the filtered data
        fig = px.choropleth(
            data_frame=state_data,
            locationmode='USA-states',
            locations='StateCode',
            scope='usa',
            color='TotalTransactionAmount',
            hover_data={'StateCode': True, 'TotalTransactionAmount': ':$,f'},
            color_continuous_scale='Reds',
            labels={'TotalTransactionAmount': 'Total Transaction Amount'},
            template='plotly_dark'
        )

        fig.update_traces(
            hovertemplate="<b>%{customdata[0]}</b><br>" +
                          "<b>TotalTransactionAmount</b>: $%{customdata[1]:,.2f}<br>",
            customdata=list(zip(state_data['StateCode'], state_data['TotalTransactionAmount']))
        )

        fig.update_layout(
            title_text=f'Total Transaction Amount by State for Category: {selected_category}, Subcategory: {selected_subcategory}',
            title_xanchor='center',
            title_font=dict(size=12),
            title_x=0.5,
            geo=dict(scope='usa'),
        )

        # Return the figure and set the display style to block (visible)
        return fig, {"display": "block"}

    except Exception as e:
        print(f"Error: {e}")
        return go.Figure(), {"display": "none"}
if __name__ == '__main__':
    app.run_server(debug=True, use_reloader=False)

De plus, j'ai ce fichier CSS pour formater la page Web :

/* styles.css */

.container {
  display: grid;
  grid-template-rows: 1fr 1fr 1fr;
  grid-template-columns: 1fr 1fr 1fr;
  grid-column-gap: 15px;
  grid-row-gap: 15px;
  background-image: url("https://plainbackground.com/plain1024/383c3d.png");
  background-size: 100%;
  background-position: grid-ce;
}

.hexgrid-1-container {
  /* grid-area: 1/1/3/3; */
  grid-row: span 2;
  grid-column: span 2;
  padding: 2px 2px 2px 2px;
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsla(0, 7%, 11%, 0.9);
  position: relative;
}

.hexgrid-2-container {
  grid-area: 1/3/2/4;
  padding: 3rem 4rem 4rem;
  width: 70%;
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsl(0, 7%, 11%, 0.9);
  position: relative;
}

.base-plot-container {
  /* Add your custom styles for base-plot container here */
  grid-area: 2/3/3/4;
  padding: 3rem 4rem 4rem;
  width: 70%;
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsl(0, 7%, 11%, 0.9);
  position: relative;
}

.us-map-container {
  grid-area: 3/3/4/4;
  padding: 3rem 4rem 4rem;
  width: 70%;
  /* position: fixed; */
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsl(0, 7%, 11%, 0.9);
  position: relative;
}

.fifth-container {
  grid-area: 3/2/4/3;
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsl(0, 7%, 11%, 0.9);
  position: relative;
}

.sixth-container {
  grid-area: 3/1/4/2;
  border: 1px solid hsl(176, 87%, 7%, 0.6);
  border-radius: 10px;
  box-shadow: rgba(250, 118, 3, 0.4) -5px 5px, rgba(250, 118, 3, 0.3) -10px 10px, rgba(250, 118, 3, 0.2) -15px 15px;
  background: hsl(0, 7%, 11%, 0.9);
  position: relative;
}

J'ai essayé de mettre à jour la fonction de rappel mais je n'ai pas fait beaucoup de progrès et il me semblait que je faisais beaucoup de choses de travers. Quelle est la manière la plus simple d’implémenter cette fonctionnalité ? Merci d'avance.

P粉378890106
P粉378890106

répondre à tous(1)
P粉252423906

Vous pouvez effectuer des rappels pour écouter les événements de clic, échanger les positions du graphique, puis remettre le graphique à la position mise à jour. Vous devez définir la logique de clic en fonction de votre cas d'utilisation. Vous pouvez implémenter quelque chose comme ceci :

@app.callback(
    Output('hexgrid-1-container', 'children'),
    Output('hexgrid-2-container', 'children'),
    Input('hexgrid-2', 'clickData'),
    State('hexgrid-1-container', 'children'),
    State('hexgrid-2-container', 'children')
)
def swap_graphs(clickData, hexgrid_1_children, hexgrid_2_children):
    clicked_graph_id = 1  # Assuming hexgrid-2 was clicked, you can change this logic based on your use case

    if clicked_graph_id == 1:
        # Swap graph between hexgrid-1 and hexgrid-2
        return hexgrid_2_children, hexgrid_1_children

    return hexgrid_1_children, hexgrid_2_children
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal
À propos de nous Clause de non-responsabilité Sitemap
Site Web PHP chinois:Formation PHP en ligne sur le bien-être public,Aidez les apprenants PHP à grandir rapidement!