大数据量数据存储分表实例(企业级应用系统)附原码
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。 例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。
例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方式进行数据查询、分析、图表。
如 按5分钟单站点的数据12*24(小时)*365(天)*(监测项)10=100W ,也就是一个站点一年数据量 100w条,100站*100W =1亿条这样的数据是无法满足快速查询。
所以我们就按照 ”tb_5M_年_站号“建表名称,tb_时间刻度_年份_站号建表 。 "TB_5M_2016_A0001", "TB_5M_2016_A0002", "TB_5M_2016_A0003",, "TB_5M_2016_A0004"
条张表 存储100W,如存储1分钟的数据单表就 500W条, 如1秒钟数据:60*500W=3亿条数据,这样不行啊,我们要以在分表,分表规则中加一个月份,tb_5M_年_月_站号,这里就不说了。
问题来,我们如何方便快捷编写代码那?,我们还想用ORM(EF)进行数据查询,就拿我们真实项目来说吧。
思路,我们用.NET开发,在数据库建基本表(tb_5m_Base)来实现EF,用 DbContext实现数据访问。
别的不多说了,直接来代码吧,
功能5分钟数据查询,用户指定开始时间、结束时间、单(多)选择站点、单(多)选择监测 项目,进行数据查询功能。
代码发如下:
public class Tb_5m_Base
{
public int ID{ get; set; }
public Datatime Time{ get; set; }
public string Pcodes { get; set; }
public double Values{ get; set; }
}
public partial class EntityFrameworkDataContext : DbContext
{
static EntityFrameworkDataContext()
{
Database.SetInitializer
}
public EntityFrameworkDataContext()
: base("Name=EntityFrameworkDataContext")
{
}
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Configurations.Add(new tb_5m_Base());
}
public DbSet TB_5m_Base{ get; set; }
}
public class BLLDataQuery
{
///
/// 获取数据
///
/// 开始日期
/// 结果日期
/// 站点ID :1,2,3
/// 监测项 :EC,PC,MC
///
public static List
{
List
string[] strArray = stationids.Split(new char[] { ',' });
int year = startTime.Year;
int num = endTime.Year;
string str = string.Empty;
string commandText = string.Empty;
pcodus=pcodus;
while (year
{
foreach (string strstationid in strArray) //站点
{
tbname= string.Format("tb_5m_{0}_{1}_Src", year, strstationid );
commandText = string.Format("Select * from {0} where TIME between '{1}' and '{2}' and pcodes in ({3}) ", new object[] { tbname, startTime, endTime, pcodus});
try
{
using (EntityFrameworkDataContext _dbcontext = EntityFrameworkDataContext.CreateDbContext)
{
list.AddRange(_dbcontext.Database.SqlQuery
}
}
catch (Exception exception)
{
}
}
year++;
}
return list;
}

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











DDREASE は、ハード ドライブ、SSD、RAM ディスク、CD、DVD、USB ストレージ デバイスなどのファイル デバイスまたはブロック デバイスからデータを回復するためのツールです。あるブロック デバイスから別のブロック デバイスにデータをコピーし、破損したデータ ブロックを残して正常なデータ ブロックのみを移動します。 ddreasue は、回復操作中に干渉を必要としないため、完全に自動化された強力な回復ツールです。さらに、ddasue マップ ファイルのおかげでいつでも停止および再開できます。 DDREASE のその他の主要な機能は次のとおりです。 リカバリされたデータは上書きされませんが、反復リカバリの場合にギャップが埋められます。ただし、ツールに明示的に指示されている場合は切り詰めることができます。複数のファイルまたはブロックから単一のファイルにデータを復元します

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

このウェブサイトは3月7日、ファーウェイのデータストレージ製品ラインの社長である周岳峰博士が最近MWC2024カンファレンスに出席し、特にウォームデータ(WarmData)とコールドデータ(ColdData)用に設計された新世代のOceanStorArctic磁電ストレージソリューションをデモンストレーションしたと報じた。ファーウェイのデータストレージ製品ラインの社長である周岳峰氏は、一連の革新的なソリューションをリリースした 画像出典: このサイトに添付されているファーウェイの公式プレスリリースは次のとおりです: このソリューションのコストは磁気テープのコストより 20% 低く、そのコストは磁気テープのコストよりも 20% 低くなります。消費電力はハードディスクよりも90%低いです。外国のテクノロジーメディアのblocksandfilesによると、ファーウェイの広報担当者も磁気電子ストレージソリューションに関する情報を明らかにした:ファーウェイの磁気電子ディスク(MED)は磁気ストレージメディアの主要な革新である。初代ME

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

今週、OpenAI、Microsoft、Bezos、Nvidiaが投資するロボット企業FigureAIは、7億ドル近くの資金調達を受け、来年中に自立歩行できる人型ロボットを開発する計画であると発表した。そしてテスラのオプティマスプライムには繰り返し良い知らせが届いている。今年が人型ロボットが爆発的に普及する年になることを疑う人はいないだろう。カナダに拠点を置くロボット企業 SanctuaryAI は、最近新しい人型ロボット Phoenix をリリースしました。当局者らは、多くのタスクを人間と同じ速度で自律的に完了できると主張している。人間のスピードでタスクを自律的に完了できる世界初のロボットである Pheonix は、各オブジェクトを優しくつかみ、動かし、左右にエレガントに配置することができます。自律的に物体を識別できる
