ホームページ データベース mysql チュートリアル Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

Jun 07, 2016 pm 02:51 PM
hive 関数 分析する

1.GROUPING SETS与另外哪种方式等价? 2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成? 3.ROLLUP与ROLLUP关系是什么? GROUPING SETS,GROUPING__ID,CUBE,ROLLUP这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统

1.GROUPING SETS与另外哪种方式等价?
2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成?

3.ROLLUP与ROLLUP关系是什么?


GROUPING SETS,GROUPING__ID,CUBE,ROLLUP 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。 Hive版本为 apache-hive-0.13.1 数据准备:
    2015-03,2015-03-10,cookie1
    2015-03,2015-03-10,cookie5
    2015-03,2015-03-12,cookie7
    2015-04,2015-04-12,cookie3
    2015-04,2015-04-13,cookie2
    2015-04,2015-04-13,cookie4
    2015-04,2015-04-16,cookie4
    2015-03,2015-03-10,cookie2
    2015-03,2015-03-10,cookie3
    2015-04,2015-04-12,cookie5
    2015-04,2015-04-13,cookie6
    2015-04,2015-04-15,cookie3
    2015-04,2015-04-15,cookie2
    2015-04,2015-04-16,cookie1

    CREATE EXTERNAL TABLE lxw1234 (
    month STRING,
    day STRING,
    cookieid STRING
    ) ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    stored as textfile location '/tmp/lxw11/';


    hive> select * from lxw1234;
    OK
    2015-03 2015-03-10      cookie1
    2015-03 2015-03-10      cookie5
    2015-03 2015-03-12      cookie7
    2015-04 2015-04-12      cookie3
    2015-04 2015-04-13      cookie2
    2015-04 2015-04-13      cookie4
    2015-04 2015-04-16      cookie4
    2015-03 2015-03-10      cookie2
    2015-03 2015-03-10      cookie3
    2015-04 2015-04-12      cookie5
    2015-04 2015-04-13      cookie6
    2015-04 2015-04-15      cookie3
    2015-04 2015-04-15      cookie2
    2015-04 2015-04-16      cookie1
ログイン後にコピー

GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day)
    ORDER BY GROUPING__ID;

    month      day            uv      GROUPING__ID
    ------------------------------------------------
    2015-03    NULL            5       1
    2015-04    NULL            6       1
    NULL       2015-03-10      4       2
    NULL       2015-03-12      1       2
    NULL       2015-04-12      2       2
    NULL       2015-04-13      3       2
    NULL       2015-04-15      2       2
    NULL       2015-04-16      2       2


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
ログイン後にコピー

再如:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day,(month,day))
    ORDER BY GROUPING__ID;

    month         day             uv      GROUPING__ID
    ------------------------------------------------
    2015-03       NULL            5       1
    2015-04       NULL            6       1
    NULL          2015-03-10      4       2
    NULL          2015-03-12      1       2
    NULL          2015-04-12      2       2
    NULL          2015-04-13      3       2
    NULL          2015-04-15      2       2
    NULL          2015-04-16      2       2
    2015-03       2015-03-10      4       3
    2015-03       2015-03-12      1       3
    2015-04       2015-04-12      2       3
    2015-04       2015-04-13      3       3
    2015-04       2015-04-15      2       3
    2015-04       2015-04-16      2       3


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
ログイン後にコピー

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE
根据GROUP BY的维度的所有组合进行聚合。
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    WITH CUBE
    ORDER BY GROUPING__ID;


    month                              day             uv     GROUPING__ID
    --------------------------------------------
    NULL            NULL            7       0
    2015-03         NULL            5       1
    2015-04         NULL            6       1
    NULL            2015-04-12      2       2
    NULL            2015-04-13      3       2
    NULL            2015-04-15      2       2
    NULL            2015-04-16      2       2
    NULL            2015-03-10      4       2
    NULL            2015-03-12      1       2
    2015-03         2015-03-10      4       3
    2015-03         2015-03-12      1       3
    2015-04         2015-04-16      2       3
    2015-04         2015-04-12      2       3
    2015-04         2015-04-13      3       3
    2015-04         2015-04-15      2       3



    等价于
    SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
    UNION ALL
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
ログイン後にコピー

ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
    比如,以month维度进行层级聚合:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY month,day
    WITH ROLLUP
    ORDER BY GROUPING__ID;

    month                              day             uv     GROUPING__ID
    ---------------------------------------------------
    NULL             NULL            7       0
    2015-03          NULL            5       1
    2015-04          NULL            6       1
    2015-03          2015-03-10      4       3
    2015-03          2015-03-12      1       3
    2015-04          2015-04-12      2       3
    2015-04          2015-04-13      3       3
    2015-04          2015-04-15      2       3
    2015-04          2015-04-16      2       3

    可以实现这样的上钻过程:
    月天的UV->月的UV->总UV

复制代码

    --把month和day调换顺序,则以day维度进行层级聚合:

    SELECT
    day,
    month,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY day,month
    WITH ROLLUP
    ORDER BY GROUPING__ID;


    day                                month              uv     GROUPING__ID
    -------------------------------------------------------
    NULL            NULL               7       0
    2015-04-13      NULL               3       1
    2015-03-12      NULL               1       1
    2015-04-15      NULL               2       1
    2015-03-10      NULL               4       1
    2015-04-16      NULL               2       1
    2015-04-12      NULL               2       1
    2015-04-12      2015-04            2       3
    2015-03-10      2015-03            4       3
    2015-03-12      2015-03            1       3
    2015-04-13      2015-04            3       3
    2015-04-15      2015-04            2       3
    2015-04-16      2015-04            2       3

    可以实现这样的上钻过程:
    天月的UV->天的UV->总UV
    (这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)
ログイン後にコピー


このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

golang 関数で新しい関数を動的に作成するためのヒント golang 関数で新しい関数を動的に作成するためのヒント Apr 25, 2024 pm 02:39 PM

Go 言語は、クロージャとリフレクションという 2 つの動的関数作成テクノロジを提供します。クロージャを使用すると、クロージャ スコープ内の変数にアクセスでき、リフレクションでは FuncOf 関数を使用して新しい関数を作成できます。これらのテクノロジーは、HTTP ルーターのカスタマイズ、高度にカスタマイズ可能なシステムの実装、プラグイン可能なコンポーネントの構築に役立ちます。

C++ 関数の命名におけるパラメーターの順序に関する考慮事項 C++ 関数の命名におけるパラメーターの順序に関する考慮事項 Apr 24, 2024 pm 04:21 PM

C++ 関数の名前付けでは、読みやすさを向上させ、エラーを減らし、リファクタリングを容易にするために、パラメーターの順序を考慮することが重要です。一般的なパラメータの順序規則には、アクション-オブジェクト、オブジェクト-アクション、意味論的な意味、および標準ライブラリへの準拠が含まれます。最適な順序は、関数の目的、パラメーターの種類、潜在的な混乱、および言語規約によって異なります。

Java で効率的で保守しやすい関数を記述するにはどうすればよいでしょうか? Java で効率的で保守しやすい関数を記述するにはどうすればよいでしょうか? Apr 24, 2024 am 11:33 AM

効率的で保守しやすい Java 関数を作成するための鍵は、シンプルに保つことです。意味のある名前を付けてください。特殊な状況に対処します。適切な可視性を使用してください。

Excel関数の公式の完全なコレクション Excel関数の公式の完全なコレクション May 07, 2024 pm 12:04 PM

1. SUM 関数は、列またはセルのグループ内の数値を合計するために使用されます (例: =SUM(A1:J10))。 2. AVERAGE 関数は、列またはセルのグループ内の数値の平均を計算するために使用されます (例: =AVERAGE(A1:A10))。 3. COUNT 関数。列またはセルのグループ内の数値またはテキストの数をカウントするために使用されます。例: =COUNT(A1:A10)。 4. IF 関数。指定された条件に基づいて論理的な判断を行い、結果を返すために使用されます。対応する結果。

C++関数のデフォルトパラメータと可変パラメータの長所と短所の比較 C++関数のデフォルトパラメータと可変パラメータの長所と短所の比較 Apr 21, 2024 am 10:21 AM

C++ 関数のデフォルト パラメーターの利点には、呼び出しの簡素化、可読性の向上、エラーの回避などがあります。欠点は、柔軟性が限られていることと、名前の制限があることです。可変引数パラメーターの利点には、無制限の柔軟性と動的バインディングが含まれます。欠点としては、複雑さの増大、暗黙的な型変換、デバッグの難しさなどが挙げられます。

参照型を返す C++ 関数の利点は何ですか? 参照型を返す C++ 関数の利点は何ですか? Apr 20, 2024 pm 09:12 PM

C++ で参照型を返す関数の利点は次のとおりです。 パフォーマンスの向上: 参照による受け渡しによりオブジェクトのコピーが回避され、メモリと時間が節約されます。直接変更: 呼び出し元は、返された参照オブジェクトを再割り当てせずに直接変更できます。コードの簡素化: 参照渡しによりコードが簡素化され、追加の代入操作は必要ありません。

カスタム PHP 関数と定義済み関数の違いは何ですか? カスタム PHP 関数と定義済み関数の違いは何ですか? Apr 22, 2024 pm 02:21 PM

カスタム PHP 関数と定義済み関数の違いは次のとおりです。 スコープ: カスタム関数はその定義のスコープに限定されますが、事前定義関数はスクリプト全体からアクセスできます。定義方法: カスタム関数は function キーワードを使用して定義されますが、事前定義関数は PHP カーネルによって定義されます。パラメータの受け渡し: カスタム関数はパラメータを受け取りますが、事前定義された関数はパラメータを必要としない場合があります。拡張性: カスタム関数は必要に応じて作成できますが、事前定義された関数は組み込みで変更できません。

C++ 関数例外の詳細: カスタマイズされたエラー処理 C++ 関数例外の詳細: カスタマイズされたエラー処理 May 01, 2024 pm 06:39 PM

C++ の例外処理は、特定のエラー メッセージ、コンテキスト情報を提供し、エラーの種類に基づいてカスタム アクションを実行するカスタム例外クラスを通じて強化できます。 std::Exception から継承した例外クラスを定義して、特定のエラー情報を提供します。カスタム例外をスローするには、throw キーワードを使用します。 try-catch ブロックでdynamic_castを使用して、キャッチされた例外をカスタム例外タイプに変換します。実際の場合、open_file 関数は FileNotFoundException 例外をスローします。例外をキャッチして処理すると、より具体的なエラー メッセージが表示されます。

See all articles