Mongo Database性能优化
Mongo Database性能优化 SQL Server有工具进行数据库的优化,Mongo Database Profiler.不仅有,而且功能更强大。 MongoDB 自带 Profiler,可以非常方便地记录下所有耗时过长操作,以便于调优。有两种方式可以控制 Profiling 的开关和级别,第一种是直接在启
Mongo Database性能优化
SQL Server有工具进行数据库的优化,Mongo Database Profiler.不仅有,而且功能更强大。
MongoDB 自带 Profiler,可以非常方便地记录下所有耗时过长操作,以便于调优。有两种方式可以控制 Profiling 的开关和级别,第一种是直接在启动参数里直接进行设置。
启动MongoDB时加上–profile=级别 即可。
也可以在客户端调用db.setProfilingLevel(级别) 命令来实时配置。可以通过db.getProfilingLevel()命令来获取当前的Profile级别。
> db.setProfilingLevel(2);
www.2cto.com
{"was" : 0 , "ok" : 1}
> db.getProfilingLevel()
上面斜体的级别可以取0,1,2 三个值,他们表示的意义如下:
0 – 不开启,关闭性能分析,测试环境可以打开,生成环境关闭,对性能有很大影响
1 – 记录慢命令 (默认为>100ms)
2 – 记录所有命令
Profile 记录在级别1时会记录慢命令,那么这个慢的定义是什么?上面我们说到其默认为100ms,当然有默认就有设置,其设置方法和级别一样有两种,一种是通过添加–slowms启动参数配置。第二种是调用db.setProfilingLevel时加上第二个参数:
db.setProfilingLevel( level , slowms )
db.setProfilingLevel( 1 , 10 );
Profiler 信息保存在 system.profile (Capped Collection) 中。也可以通过这个工具进行设置和查看数据:强大的MongoDB数据库管理工具
Mongo Shell 还提供了一个比较简洁的命令show profile,可列出最近5条执行时间超过1ms的 Profile 记录。
查看当前库下所有集合的分析数据
db.system.profile.find()
查看某一个集合的分析数据
db.system.profile.find({info:/user.info/})
查看执行时间大于100毫秒的执行操作,并倒序排列,并取前5行
db.system.profile.find({millis:{$gt:100}}).sort({$natural:-1}).limit(5);
Profile 信息内容详解:
ts-该命令在何时执行. www.2cto.com
millis Time-该命令执行耗时,以毫秒记.
info-本命令的详细信息.
query-表明这是一个query查询操作.
ntoreturn-本次查询客户端要求返回的记录数.比如, findOne()命令执行时 ntoreturn 为 1.有limit(n) 条件时ntoreturn为n.
query-具体的查询条件(如x>3).
nscanned-本次查询扫描的记录数.
reslen-返回结果集的大小.
nreturned-本次查询实际返回的结果集.
update-表明这是一个update更新操作.
fastmod-Indicates a fast modify operation. See Updates. These operations are normally quite fast. www.2cto.com
fastmodinsert – indicates a fast modify operation that performed an upsert.
upsert-表明update的upsert参数为true.此参数的功能是如果update的记录不存在,则用update的条件insert一条记录.
moved-表明本次update是否移动了硬盘上的数据,如果新记录比原记录短,通常不会移动当前记录,如果新记录比原记录长,那么可能会移动记录到其它位置,这时候会导致相关索引的更新.磁盘操作更多,加上索引更新,会使得这样的操作比较慢.
insert-这是一个insert插入操作.
getmore-这是一个getmore 操作,getmore通常发生在结果集比较大的查询时,第一个query返回了部分结果,后续的结果是通过getmore来获取的。
2、优化
www.2cto.com
MongoDB 查询优化
如果nscanned(扫描的记录数)远大于nreturned(返回结果的记录数)的话,那么我们就要考虑通过加索引来优化记录定位了。
reslen 如果过大,那么说明我们返回的结果集太大了,这时请查看find函数的第二个参数是否只写上了你需要的属性名。(类似于MySQL中不要总是select *)
对于创建索引的建议是:如果很少读,那么尽量不要添加索引,因为索引越多,写操作会越慢。如果读量很大,那么创建索引还是比较划算的。
MongoDB 更新优化
如果写查询量或者update量过大的话,多加索引是会有好处的。以及~~~~(省略N字,和RDBMS差不多的道理)
Use fast modify operations when possible (and usually with these, an index). See Updates.
Profiler 的效率
Profiling 功能肯定是会影响效率的,但是不太严重,原因是他使用的是system.profile 来记录,而system.profile 是一个capped collection 这种collection 在操作上有一些限制和特点,但是效率更高。 www.2cto.com
优化建议:
如果 nscanned 远大于 nreturned,那么需要使用索引。
如果 reslen 返回字节非常大,那么考虑只获取所需的字段。
执行 update 操作时同样检查一下 nscanned,并使用索引减少文档扫描数量。
使用 db.eval() 在服务端执行某些统计操作。
减少返回文档数量,使用 skip & limit 分页。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











IntelArrowLake は、LunarLake と同じプロセッサ アーキテクチャに基づいていると予想されており、つまり、Intel の新しい Lion Cove パフォーマンス コアが経済的な Skymont 効率コアと組み合わされることになります。

さまざまな Java フレームワークのパフォーマンス比較: REST API リクエスト処理: Vert.x が最高で、リクエスト レートは SpringBoot の 2 倍、Dropwizard の 3 倍です。データベース クエリ: SpringBoot の HibernateORM は Vert.x や Dropwizard の ORM よりも優れています。キャッシュ操作: Vert.x の Hazelcast クライアントは、SpringBoot や Dropwizard のキャッシュ メカニズムよりも優れています。適切なフレームワーク: アプリケーションの要件に応じて選択します。Vert.x は高パフォーマンスの Web サービスに適しており、SpringBoot はデータ集約型のアプリケーションに適しており、Dropwizard はマイクロサービス アーキテクチャに適しています。

PHP の配列キー値の反転メソッドのパフォーマンスを比較すると、array_flip() 関数は、大規模な配列 (100 万要素以上) では for ループよりもパフォーマンスが良く、所要時間が短いことがわかります。キー値を手動で反転する for ループ方式は、比較的長い時間がかかります。

時間計算量は、入力のサイズに対するアルゴリズムの実行時間を測定します。 C++ プログラムの時間の複雑さを軽減するためのヒントには、適切なコンテナー (ベクター、リストなど) を選択して、データのストレージと管理を最適化することが含まれます。クイックソートなどの効率的なアルゴリズムを利用して計算時間を短縮します。複数の操作を排除して二重カウントを削減します。条件分岐を使用して、不必要な計算を回避します。二分探索などのより高速なアルゴリズムを使用して線形探索を最適化します。

C++ マルチスレッドのパフォーマンスを最適化するための効果的な手法には、リソースの競合を避けるためにスレッドの数を制限することが含まれます。競合を軽減するには、軽量のミューテックス ロックを使用します。ロックの範囲を最適化し、待ち時間を最小限に抑えます。ロックフリーのデータ構造を使用して同時実行性を向上させます。ビジー待機を回避し、イベントを通じてリソースの可用性をスレッドに通知します。

高パフォーマンスのアプリケーションを開発する場合、C++ は、特にマイクロベンチマークで他の言語よりも優れたパフォーマンスを発揮します。マクロベンチマークでは、Java や C# などの他の言語の利便性と最適化メカニズムの方がパフォーマンスが優れている場合があります。実際のケースでは、C++ は画像処理、数値計算、ゲーム開発で優れたパフォーマンスを発揮し、メモリ管理とハードウェア アクセスを直接制御することで明らかなパフォーマンス上の利点をもたらします。

PHP 関数の効率を最適化する 5 つの方法: 変数の不必要なコピーを避ける。参照を使用して変数のコピーを回避します。繰り返しの関数呼び出しを避けてください。単純な関数をインライン化します。配列を使用したループの最適化。

PHP では、配列からオブジェクトへの変換はパフォーマンスに影響を与え、主に配列のサイズ、複雑さ、オブジェクト クラスなどの要因によって影響を受けます。パフォーマンスを最適化するには、カスタム反復子の使用、不必要な変換の回避、配列のバッチ変換などの手法を検討してください。
