TI TPA2016D2 D类音频放大方案
欢迎进入IT技术社区论坛,与200万技术人员互动交流 >>进入 TI 公司的TPA2016D2 是立体声无滤波器的D类音频功率放大器,带有音量控制,动态范围压缩(DRC)和自动增益控制(AGC),5V工作时每路能向8欧姆负载1.7W的功率.器件具有独立的软件关断特性,并提供热保护和短
欢迎进入IT技术社区论坛,与200万技术人员互动交流 >>进入
TI 公司的TPA2016D2 是立体声无滤波器的D类音频功率放大器,带有音量控制,动态范围压缩(DRC)和自动增益控制(AGC),5V工作时每路能向8欧姆负载1.7W的功率.器件具有独立的软件关断特性,并提供热保护和短路保护,广泛应用在无线手机和PDA,手提导航设备,手提DVD播放器,笔记本电脑,收音机,游戏机以及智力玩具等.本文介绍了TPA2016D2的主要特性,功能方框图和应用电路以及TPA2016D2EVM评估板电路图和所用元件列表.The TPA2016D2 is a stereo, filter-free Class-D audio power amplifier with volume control, dynamic range compression (DRC) and automatic gain control (AGC). It is available in a 2.2 mm x 2.2 mm WCSP package.
The DRC/AGC function in the TPA2016D2 is programmable via a digital I2C interface. The DRC/AGC function can be configured to automatically prevent distortion of the audio signal and enhance quiet passages that are normally not heard. The DRC/AGC can also be configured to protect the speaker from damage at high power levels and compress the dynamic range of music to fit within the dynamic range of the speaker. The gain can be selected from -28 dB to +30 dB in 1-dB steps. The TPA2016D2 is capable of driving 1.7 W/Ch at 5 V or 750 mW/Ch at 3.6 V into 8 Ω load. The device features independent software shutdown controls for each channel and also provides thermal and short circuit protection.
图1. TPA2016D2外形图
TPA2016D2 主要特性:
Filter-Free Class-D Architecture
1.7 W/Ch Into 8 Ω at 5 V (10% THD+N)
750 mW/Ch Into 8 Ω at 3.6 V (10% THD+N)
Power Supply Range: 2.5 V to 5.5 V
Flexible Operation With/Without I2C
Programmable DRC/AGC Parameters
Digital I2C Volume Control
Selectable Gain from -28 dB to 30 dB in 1-dB Steps (when compression is used)
Selectable Attack, Release and Hold Times
4 Selectable Compression Ratios
Low Supply Current: 3.5 mA
Low Shutdown Current: 0.2 µA
High PSRR: 80 dB
Fast Start-up Time: 5 ms
AGC Enable/Disable Function
Limiter Enable/Disable Function
Short-Circuit and Thermal Protection
Space-Saving Package 2,2 mm × 2,2 mm Nano-Free WCSP (YZH)
应用范围:
Wireless or Cellular Handsets and PDAs
Portable Navigation Devices
Portable DVD Player
Notebook PCs
Portable Radio
Portable Games
Educational Toys
USB Speakers
图2. TPA2016D2功能方框图
图3. TPA2016D2简化应用电路
The TPA2016D2 evaluation module (EVM) is a complete, stand-alone audio board. It contains the TPA2016D2 WCSP (YZH) Class-D audio power amplifier.
图4. TPA2016D2EVM
[1] [2]

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









StableDiffusion3 の論文がついに登場しました!このモデルは2週間前にリリースされ、Soraと同じDiT(DiffusionTransformer)アーキテクチャを採用しており、リリースされると大きな話題を呼びました。前バージョンと比較して、StableDiffusion3で生成される画像の品質が大幅に向上し、マルチテーマプロンプトに対応したほか、テキスト書き込み効果も向上し、文字化けが発生しなくなりました。 StabilityAI は、StableDiffusion3 はパラメータ サイズが 800M から 8B までの一連のモデルであると指摘しました。このパラメーター範囲は、モデルを多くのポータブル デバイス上で直接実行できることを意味し、AI の使用を大幅に削減します。

自動運転では軌道予測が重要な役割を果たしており、自動運転軌道予測とは、車両の走行過程におけるさまざまなデータを分析し、将来の車両の走行軌跡を予測することを指します。自動運転のコアモジュールとして、軌道予測の品質は下流の計画制御にとって非常に重要です。軌道予測タスクには豊富な技術スタックがあり、自動運転の動的/静的知覚、高精度地図、車線境界線、ニューラル ネットワーク アーキテクチャ (CNN&GNN&Transformer) スキルなどに精通している必要があります。始めるのは非常に困難です。多くのファンは、できるだけ早く軌道予測を始めて、落とし穴を避けたいと考えています。今日は、軌道予測に関するよくある問題と入門的な学習方法を取り上げます。関連知識の紹介 1. プレビュー用紙は整っていますか? A: まずアンケートを見てください。

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

1. PPTを開き、メニューバーの[挿入]をクリックし、[オーディオ]をクリックします。 2. 表示されるファイル選択ボックスで、挿入する最初のオーディオ ファイルを選択します。 3. 挿入が成功すると、挿入したばかりのファイルを表すスピーカー アイコンが PPT に表示され、PPT のスクリーニング プロセス中にファイルを再生して聞いたり、音量を調整したりすることができます。 4. 同じ方法に従って 2 番目の音声ファイルを挿入すると、PPT に 2 つのスピーカー アイコンが表示され、それぞれ 2 つの音声ファイルを表します。 5. 最初の音声ファイルのアイコンをクリックして選択し、[再生]メニューをクリックします。 6. ツールバーの [スタート] で [スライド全体で再生] を選択し、人間の介入なしにすべてのスライドでこの音声が再生されるように設定します。 7. ステップ 6 の手順に従います。

Mac では、異なるドキュメント間でコンテンツをコピーして貼り付ける必要があるのが一般的です。 macOS のクリップボードには最後にコピーされた項目のみが保持されるため、作業効率が制限されます。幸いなことに、クリップボード履歴を簡単に表示および管理できるサードパーティ製アプリケーションがいくつかあります。 Finder でクリップボードの内容を表示する方法 Finder にはクリップボード ビューアが組み込まれており、現在のクリップボードの内容をいつでも表示して、貼り付けエラーを回避できます。操作は非常に簡単です。Finder を開き、[編集] メニューをクリックして、[クリップボードを表示] を選択します。 Finder でクリップボードの内容を表示する機能は小さいですが、いくつか注意点があります。Finder のクリップボード ビューアは内容を表示するだけで、編集することはできません。コピーした場合

9 月 23 日、論文「DeepModelFusion:ASurvey」が国立国防技術大学、JD.com、北京理工大学によって発表されました。ディープ モデルの融合/マージは、複数のディープ ラーニング モデルのパラメーターまたは予測を 1 つのモデルに結合する新しいテクノロジーです。さまざまなモデルの機能を組み合わせて、個々のモデルのバイアスとエラーを補償し、パフォーマンスを向上させます。大規模な深層学習モデル (LLM や基本モデルなど) での深層モデルの融合は、高い計算コスト、高次元のパラメーター空間、異なる異種モデル間の干渉など、いくつかの課題に直面しています。この記事では、既存のディープ モデル フュージョン手法を 4 つのカテゴリに分類します。 (1) 「パターン接続」。損失低減パスを介して重み空間内の解を接続し、より適切な初期モデル フュージョンを取得します。

上記と著者の個人的な理解は、画像ベースの 3D 再構成は、一連の入力画像からオブジェクトまたはシーンの 3D 形状を推測することを含む困難なタスクであるということです。学習ベースの手法は、3D形状を直接推定できることから注目を集めています。このレビュー ペーパーは、これまでにない新しいビューの生成など、最先端の 3D 再構成技術に焦点を当てています。入力タイプ、モデル構造、出力表現、トレーニング戦略など、ガウス スプラッシュ メソッドの最近の開発の概要が提供されます。未解決の課題と今後の方向性についても議論します。この分野の急速な進歩と 3D 再構成手法を強化する数多くの機会を考慮すると、アルゴリズムを徹底的に調査することが重要であると思われます。したがって、この研究は、ガウス散乱の最近の進歩の包括的な概要を提供します。 (親指を上にスワイプしてください

OpenAI によってリリースされた GPT-4o モデルは、特に複数の入力メディア (テキスト、オーディオ、画像) を処理し、対応する出力を生成する機能において、間違いなく大きな進歩です。この機能により、人間とコンピューターの対話がより自然かつ直観的になり、AI の実用性と使いやすさが大幅に向上します。 GPT-4o の主なハイライトには、高いスケーラビリティ、マルチメディア入出力、自然言語理解機能のさらなる向上などが含まれます。 1. クロスメディア入出力: GPT-4o+ は、テキスト、オーディオ、画像の任意の組み合わせを入力として受け入れ、これらのメディアから出力を直接生成できます。これにより、単一の入力タイプのみを処理する従来の AI モデルの制限が打ち破られ、人間とコンピューターの対話がより柔軟かつ多様になります。このイノベーションはスマート アシスタントの強化に役立ちます
