ホームページ データベース mysql チュートリアル 索引视图有助于提高 T-SQL 的性能

索引视图有助于提高 T-SQL 的性能

Jun 07, 2016 pm 03:07 PM
パフォーマンス 改善する 索引 ビュー

T-SQL 是一种允许您以逻辑方式设计请求的语言。这里所说的逻辑的意思是,当编写查询时,您指定的是希望获得 什么 结果,而不是希望 以何种方式 获得结果。对如何处理查询进行设计是查询优化器的工作。您所遇到的需要 T-SQL 解决方案的每个问题通常都有许多不

T-SQL 是一种允许您以逻辑方式设计请求的语言。这里所说的“逻辑”的意思是,当编写查询时,您指定的是希望获得什么 结果,而不是希望以何种方式 获得结果。对如何处理查询进行设计是查询优化器的工作。您所遇到的需要 T-SQL 解决方案的每个问题通常都有许多不同的解决方案,它们最终会返回同样的结果。在理想情况下,假设有两个执行同一任务的不同查询,优化器会为二者生成相同的 执行计划 - 最优化的计划。SQL Server 开发组似乎正在朝这个方向努力。利用 SQL Server 的每个发行版本,优化器会设计出更高级、更有效的计划,执行同一任务的不同查询使用这个相同计划的可能性也在提高。

不过,在许多情况下,您 编写查询的方式仍然会动态地影响查询的性能。为了使优化器在不同的计划中作出选择并找到一个高效的计划,您需要完成一些准备工作 - 也就是,创建索引。大多数人是将普通索引作为其数据库优化的一部分创建的,但我还没有看到索引视图的广泛实现。索引视图可以极大地提高查询性能,尤其在聚 合数据的时候。在某些情况下,对视图进行创建并索引后,您甚至不需要更改引用基表的原始查询,这是因为优化器的智能程度足以使用那些索引。

下 面我们将讨论使用索引视图来获得性能提高的两个问题。我假设您已经很熟悉索引视图的基本概念。(有关索引视图的详细信息,请参阅 Kalen Delaney 的 "Introducing Indexed Views" (2000 年 5 月发表,InstantDoc ID 8410)一文。)

关于新客户的问题

第一个问题涉及一个典型的市场营销请求 - 在每个期间(例如,月份),根据定单活动而定的新客户、现有客户和全部客户的数量分别是多少?某个月的新客户就是第一次下达定单的客户。现有客户是那些在 以前的月份下达过定单的客户。您可以将 Northwind 数据库中的 Orders 表作为最初的基本数据。表 1(表 1)显示了预期输出的简化版本。创建解决方案并验证您的代码在逻辑上正确无误之后,可针对一个更大的 Orders 表测试其性能,您可以通过运行第 18 页 清单 1 显示的代码,在 tempdb 中创建该表。

第 18 页 清单 2 显示了我针对此问题的第一个解决方案。定义派生表 M 的最内部查询从 Orders 返回了不同的月份和客户组合。月份表示为指向当月第一天的一个 datetime 值。定义派生表 N 的查询使用 CASE 表达式,对于每个月份和客户组合,如果该客户在当月之前还没有下达过定单,则该表达式返回 1,否则,返回 0。也就是说,如果客户是新客户,CASE 表达式返回 1。最外部查询按月份对 N 中的行进行分组,并通过对 N 表中名为 new 的列中的所有 1 进行汇总,来计算新客户的总数。客户的总数就是该组中的行数 (COUNT(*)),因为该组中的每一行都代表一个不同的客户。现有客户的数量是客户总数减去新客户的数量。

当 我编写此解决方案时,我并没有考虑性能,我只想到要用逻辑方式来编写该查询。在我的笔记本电脑上,对我在 tempdb 中创建的较大的 Orders 表运行该查询时,该查询发生了超过 137,000 次的逻辑读取,运行的时间长达 17 秒。普通索引并没有提供多少帮助 - 当我在 customerid 列和 orderdate 列上创建了组合索引后,该查询运行了 15 秒。看来,这个问题需要采用另一种方法,这次,我决定先考虑性能。

这个较大的 Orders 表会包括每个月份的每个客户的许多定单。如果您有一个只包含月份和客户的不同组合的汇总表,就可以编写一个更易于执行的查询。索引视图的实质就是对表进行汇总。请运行 清单 3 中的代码,创建一个名为 Vymcusts 的索引视图,该视图只包含月份和客户的不同组合。注意,如果您希望对一个使用聚合的视图进行索引,则必须在该视图内包括 COUNT_BIG(*) 函数。如果 SQL Server 知道每组中的行数,就可以有效地维护索引视图。

接下来,我测试了几个不同的解决方案,所有方案执行起来都比第一个要好得多。我们来看一下我编写出的执行效果最好的解决方案。我创建了另一个名为 Vnewcusts 的视图,该视图包含每个客户的最小年/月份 (ym) 值:

CREATE VIEW Vnewcusts 
AS 
SELECT customerid, MIN(ym) AS min_ym 
FROM Vymcusts (NOEXPAND) 
GROUP BY customerid
ログイン後にコピー

客户的 ym 最小值就是该客户的第一份定单的月份。NOEXPAND 提示要求优化器将索引视图视为表,不要尝试使用来自基表 Orders 的索引。最后,我将 Vymcusts (VY) 左联接到了 Vnewcusts (VN)。如果 VY 和 VN 同时拥有同一个客户,并且 VY 中的当前月份是该客户的最小月份 (VY.ym = VN.min_ym),则 VY 中的某一行会在 VN 中寻找匹配的行。如果该月份不是该客户的最小月份,则外部联接在 VN.customerid 中以及在 VN 的所有列中均返回 NULL。查询按 VY.ym 列对外部联接的结果进行分组。SQL Server 通过对 VN.customerid 中的非 Null 值进行计数来计算新客户的总数。清单 4 显示了这个最终的查询,该查询在我的笔记本电脑上只运行了 1 秒,仅发生了 280 次逻辑读取。这样的性能令人非常满意。

列基数

我发现索引视图对解决另一个问题也非常有用,这就是计算列基数 - 列中不同的值的数量。计算表中每列的基数会占用大量系统开销,因为 SQL Server 需要重新排列每列的值,这样就可以很容易地对不同的值进行计数。现在我们来看一些示例,它们使用一个具有三个数据列和一百万行的表。请运行 清单 5 显示的脚本,在 tempdb 中创建一个名为 T1 的表,该表包括的各列是 c1、c2 和 c3,这些列分别包含 50,000、100,000 和 200,000 个不同的值。

在没有适当索引的情况下,下面的查询将计算每个数据列的基数,该查询的执行性能比较差:

SET STATISTICS TIME ON 
SET STATISTICS IO ON 
SELECT COUNT(DISTINCT c1),  
COUNT(DISTINCT c2), COUNT(DISTINCT c3) FROM T1
ログイン後にコピー

我们在查询分析器中看看该查询的执行计划,我们注意到,SQL Server 对 T1 的聚集索引扫描了三次,对每一列中的值都执行了哈希操作来计数不同值的数量。因此,该查询用了很长的时间才完成,并且发生了大量 I/O 系统开销。在我的笔记本电脑上,该查询运行了 23 秒,发生了 9294 次逻辑读取。

为了获得更好的性能,很明显,第一个步骤就是对每一列进行索引:

CREATE NONCLUSTERED INDEX idx_nc_c1 ON T1(c1) 
CREATE NONCLUSTERED INDEX idx_nc_c2 ON T1(c2) 
CREATE NONCLUSTERED INDEX idx_nc_c3 ON T1(c3)
ログイン後にコピー

这样一来,SQL Server 可以用排序的方式单独扫描每个索引,并对不同的值进行计数。现在,查询只运行 5 秒钟,发生 4083 次逻辑读取。

您 可能对这样的性能提高感到满意,但对于包括更多列和更多行的表,可能还需要进一步提高性能。获得更好查询性能的一个方式(不过要以修改性能为代价)是编写 INSERT、UPDATE 和 DELETE 触发器,它们在单独的非正式表中维护每列的非重复计数值。您也可以在不使用触发器的情况下解决该问题,方法是:使用索引视图,而不是普通的非聚集索引。

对于每一列,您可以创建一个只包含感兴趣的列和 COUNT_BIG(*) 函数的索引视图,该函数是对有聚合的视图进行索引所必需的。例如,可为 c1 创建以下索引视图:

CREATE VIEW V_T1_c1 WITH SCHEMABINDING 
AS 
SELECT c1, COUNT_BIG(*)  
  AS cnt FROM dbo.T1 GROUP BY c1 
GO 
CREATE UNIQUE CLUSTERED INDEX 
 idx_uc_c1 ON V_T1_c1(c1)
ログイン後にコピー

然后,运行 清单 6 显示的脚本,为 c2 和 c3 创建索引视图。现在,重新运行该查询,测量一下持续时间和 I/O,并查看执行计划。优化器的智能程度足以理解该执行计划,对列的非重复计数进行计算,它可以只对在其 GROUP BY 子句中使用该列的索引视图内的行数进行计数。现在,该查询运行的时间不到一秒,发生的逻辑读取不到 1000 次。

关于索引视图的其他信息

如 果编写 T-SQL查询的方式对您来说很重要,您应该测试同一个问题的几个不同的解决方案来获得更好的性能。索引视图是一个很出色的优化方法,因为它会在磁盘上存 储查询结果;尤其在聚合数据时,索引视图可节省许多 I/O 系统开销。在某些情况下,索引视图可以在很大程度上提高检索性能,但要记住,索引视图也会降低修改性能。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

vivox100sとx100の違い:性能比較と機能分析 vivox100sとx100の違い:性能比較と機能分析 Mar 23, 2024 pm 10:27 PM

vivox100s と x100 携帯電話はどちらも vivo の携帯電話製品ラインの代表的なモデルであり、それぞれ異なる時代における vivo のハイエンド技術レベルを代表するものであるため、2 つの携帯電話にはデザイン、性能、機能に一定の違いがあります。この記事では、消費者が自分に合った携帯電話をより適切に選択できるように、これら 2 つの携帯電話を性能比較と機能分析の観点から詳しく比較します。まずはvivox100sとx100の性能比較を見てみましょう。 vivox100s には最新の機能が搭載されています。

Windows 11 で非表示のパフォーマンス オーバーレイを表示する方法 Windows 11 で非表示のパフォーマンス オーバーレイを表示する方法 Mar 24, 2024 am 09:40 AM

このチュートリアルでは、Windows 11 の隠れたパフォーマンス オーバーレイを明らかにするのに役立ちます。 Windows 11 のパフォーマンス オーバーレイ機能を使用すると、システム リソースをリアルタイムで監視できます。コンピューター画面上でリアルタイムの CPU 使用率、ディスク使用率、GPU 使用率、RAM 使用率などを表示できます。これは、ゲームをプレイしているときや大規模なグラフィック プログラム (ビデオ エディターなど) を使用しているときに、特定のプログラムの使用時にシステム パフォーマンスがどの程度影響を受けるかを確認する必要がある場合に便利です。システム パフォーマンスを監視するための優れた無料ソフトウェアがいくつかあり、リソース モニターなどの組み込みツールを使用してシステム パフォーマンスをチェックできますが、パフォーマンス オーバーレイ機能にも利点があります。たとえば、現在使用しているプログラムやアプリを終了する必要はありません。

Windows 10 と Windows 11 のパフォーマンス比較: どちらが優れていますか? Windows 10 と Windows 11 のパフォーマンス比較: どちらが優れていますか? Mar 28, 2024 am 09:00 AM

Windows 10 と Windows 11 のパフォーマンス比較: どちらが優れていますか?テクノロジーの継続的な開発と進歩により、オペレーティング システムは常に更新され、アップグレードされます。世界最大のオペレーティング システム開発者の 1 つとして、Microsoft の Windows シリーズ オペレーティング システムは常にユーザーから大きな注目を集めてきました。 2021 年、Microsoft は Windows 11 オペレーティング システムをリリースし、広範な議論と注目を引き起こしました。では、Windows 10 と Windows 11 のパフォーマンスの違いは何でしょうか?

Win11 と Win10 システムのパフォーマンスを比較すると、どちらの方が優れていますか? Win11 と Win10 システムのパフォーマンスを比較すると、どちらの方が優れていますか? Mar 27, 2024 pm 05:09 PM

Windows オペレーティング システムは、常にパーソナル コンピューターで最も広く使用されているオペレーティング システムの 1 つであり、最近 Microsoft が新しい Windows 11 システムを発売するまで、Windows 10 は長い間 Microsoft の主力オペレーティング システムでした。 Windows 11 システムのリリースに伴い、Windows 10 と Windows 11 システムのパフォーマンスの違いに関心が集まっていますが、どちらの方が優れているのでしょうか?まずはWを見てみましょう

Kirin 8000 プロセッサが Snapdragon シリーズと競合: 誰が王になれるでしょうか? Kirin 8000 プロセッサが Snapdragon シリーズと競合: 誰が王になれるでしょうか? Mar 25, 2024 am 09:03 AM

モバイルインターネットの時代において、スマートフォンは人々の日常生活に欠かせないものになりました。多くの場合、スマートフォンのパフォーマンスはユーザー エクスペリエンスの品質に直接影響します。スマートフォンの「頭脳」であるプロセッサーの性能は特に重要です。市場では、Qualcomm Snapdragon シリーズは常に強力なパフォーマンス、安定性、信頼性の代表格であり、最近では Huawei も独自の Kirin 8000 プロセッサを発売し、優れたパフォーマンスを備えていると言われています。一般ユーザーにとって、性能の良い携帯電話をいかに選ぶかは重要な課題となっている。今日はそうします

PHP 言語と Go 言語の比較: 大きなパフォーマンスの違い PHP 言語と Go 言語の比較: 大きなパフォーマンスの違い Mar 26, 2024 am 10:48 AM

PHP と Go は一般的に使用される 2 つのプログラミング言語であり、それぞれに異なる特徴と利点があります。その中でも性能差は誰もが一般的に気にする問題です。この記事では、パフォーマンスの観点から PHP 言語と Go 言語を比較し、具体的なコード例を通じてパフォーマンスの違いを示します。まずは、PHPとGo言語の基本的な機能を簡単に紹介します。 PHP は、もともと Web 開発用に設計されたスクリプト言語で、学習と使用が簡単で、Web 開発の分野で広く使用されています。 Go 言語は、Google によって開発されたコンパイル言語です。

Embedding サービスのローカル実行パフォーマンスは OpenAI Text-Embedding-Ada-002 を上回っており、とても便利です。 Embedding サービスのローカル実行パフォーマンスは OpenAI Text-Embedding-Ada-002 を上回っており、とても便利です。 Apr 15, 2024 am 09:01 AM

Ollama は、Llama2、Mistral、Gemma などのオープンソース モデルをローカルで簡単に実行できるようにする非常に実用的なツールです。この記事では、Ollamaを使ってテキストをベクトル化する方法を紹介します。 Ollama をローカルにインストールしていない場合は、この記事を読んでください。この記事では、nomic-embed-text[2] モデルを使用します。これは、短いコンテキストおよび長いコンテキストのタスクにおいて OpenAI text-embedding-ada-002 および text-embedding-3-small よりも優れたパフォーマンスを発揮するテキスト エンコーダーです。 o が正常にインストールされたら、nomic-embed-text サービスを開始します。

PHP 配列キー値の反転: さまざまな方法のパフォーマンス比較分析 PHP 配列キー値の反転: さまざまな方法のパフォーマンス比較分析 May 03, 2024 pm 09:03 PM

PHP の配列キー値の反転メソッドのパフォーマンスを比較すると、array_flip() 関数は、大規模な配列 (100 万要素以上) では for ループよりもパフォーマンスが良く、所要時間が短いことがわかります。キー値を手動で反転する for ループ方式は、比較的長い時間がかかります。

See all articles