Hadoop2.4.1入门实例:MaxTemperature
注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。 一、前期准备 1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277 2、准备数据文件如下sample.txt: 12345679867623119010123
注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。
一、前期准备
1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277
2、准备数据文件如下sample.txt:
123456798676231190101234567986762311901012345679867623119010123456798676231190101234561+00121534567890356
123456798676231190101234567986762311901012345679867623119010123456798676231190101234562+01122934567890456
123456798676231190201234567986762311901012345679867623119010123456798676231190101234562+02120234567893456
123456798676231190401234567986762311901012345679867623119010123456798676231190101234561+00321234567803456
123456798676231190101234567986762311902012345679867623119010123456798676231190101234561+00429234567903456
123456798676231190501234567986762311902012345679867623119010123456798676231190101234561+01021134568903456
123456798676231190201234567986762311902012345679867623119010123456798676231190101234561+01124234578903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+04121234678903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+00821235678903456
二、编写代码
1、创建Map
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<longwritable text intwritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { // parseInt doesn't like leading plus // signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } } </longwritable>
2、创建Reduce
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<text intwritable text> { @Override public void reduce(Text key, Iterable<intwritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } }</intwritable></text>
3、创建main方法
package org.jediael.hadoopDemo.maxtemperature; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err .println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } } </output>
4、导出成MaxTemp.jar,并上传至运行程序的服务器。
三、运行程序
1、创建input目录并将sample.txt复制到input目录
hadoop fs -put sample.txt /
2、运行程序
export HADOOP_CLASSPATH=MaxTemp.jar
hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
注意输出目录不能已经存在,否则会创建失败。
3、查看结果
(1)查看结果
[jediael@jediael44 code]$ hadoop fs -cat output10/*
14/07/09 14:51:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1901 42
1902 212
1903 412
1904 32
1905 102
(2)运行时输出
[jediael@jediael44 code]$ hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
14/07/09 14:50:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/09 14:50:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/09 14:50:42 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/07/09 14:50:43 INFO input.FileInputFormat: Total input paths to process : 1
14/07/09 14:50:43 INFO mapreduce.JobSubmitter: number of splits:1
14/07/09 14:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1404888618764_0001
14/07/09 14:50:44 INFO impl.YarnClientImpl: Submitted application application_1404888618764_0001
14/07/09 14:50:44 INFO mapreduce.Job: The url to track the job: http://jediael44:8088/proxy/application_1404888618764_0001/
14/07/09 14:50:44 INFO mapreduce.Job: Running job: job_1404888618764_0001
14/07/09 14:50:57 INFO mapreduce.Job: Job job_1404888618764_0001 running in uber mode : false
14/07/09 14:50:57 INFO mapreduce.Job: map 0% reduce 0%
14/07/09 14:51:05 INFO mapreduce.Job: map 100% reduce 0%
14/07/09 14:51:15 INFO mapreduce.Job: map 100% reduce 100%
14/07/09 14:51:15 INFO mapreduce.Job: Job job_1404888618764_0001 completed successfully
14/07/09 14:51:16 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=94
FILE: Number of bytes written=185387
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1051
HDFS: Number of bytes written=43
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=5812
Total time spent by all reduces in occupied slots (ms)=7023
Total time spent by all map tasks (ms)=5812
Total time spent by all reduce tasks (ms)=7023
Total vcore-seconds taken by all map tasks=5812
Total vcore-seconds taken by all reduce tasks=7023
Total megabyte-seconds taken by all map tasks=5951488
Total megabyte-seconds taken by all reduce tasks=7191552
Map-Reduce Framework
Map input records=9
Map output records=8
Map output bytes=72
Map output materialized bytes=94
Input split bytes=97
Combine input records=0
Combine output records=0
Reduce input groups=5
Reduce shuffle bytes=94
Reduce input records=8
Reduce output records=5
Spilled Records=16
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=154
CPU time spent (ms)=1450
Physical memory (bytes) snapshot=303112192
Virtual memory (bytes) snapshot=1685733376
Total committed heap usage (bytes)=136515584
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=954
File Output Format Counters
Bytes Written=43

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









拡散はより良いものを模倣するだけでなく、「創造」することもできます。拡散モデル(DiffusionModel)は、画像生成モデルである。 AI 分野でよく知られている GAN や VAE などのアルゴリズムと比較すると、拡散モデルは異なるアプローチを採用しており、その主な考え方は、最初に画像にノイズを追加し、その後徐々にノイズを除去するプロセスです。ノイズを除去して元の画像を復元する方法は、アルゴリズムの中核部分です。最後のアルゴリズムは、ランダムなノイズを含む画像から画像を生成できます。近年、生成 AI の驚異的な成長により、テキストから画像への生成、ビデオ生成など、多くのエキサイティングなアプリケーションが可能になりました。これらの生成ツールの背後にある基本原理は、以前の方法の制限を克服する特別なサンプリング メカニズムである拡散の概念です。

キミ: たった 1 文の PPT がわずか 10 秒で完成します。 PPTはとても面倒です!会議を開催するには PPT が必要であり、週次報告書を作成するには PPT が必要であり、投資を勧誘するには PPT を提示する必要があり、不正行為を告発するには PPT を送信する必要があります。大学は、PPT 専攻を勉強するようなものです。授業中に PPT を見て、授業後に PPT を行います。おそらく、デニス オースティンが 37 年前に PPT を発明したとき、PPT がこれほど普及する日が来るとは予想していなかったでしょう。 PPT 作成の大変な経験を話すと涙が出ます。 「20 ページを超える PPT を作成するのに 3 か月かかり、何十回も修正しました。PPT を見ると吐きそうになりました。」 「ピーク時には 1 日に 5 枚の PPT を作成し、息をすることさえありました。」 PPTでした。」 即席の会議をするなら、そうすべきです

北京時間6月20日早朝、シアトルで開催されている最高の国際コンピュータビジョンカンファレンス「CVPR2024」が、最優秀論文やその他の賞を正式に発表した。今年は、最優秀論文 2 件と学生優秀論文 2 件を含む合計 10 件の論文が賞を受賞しました。また、最優秀論文ノミネートも 2 件、学生優秀論文ノミネートも 4 件ありました。コンピュータービジョン (CV) 分野のトップカンファレンスは CVPR で、毎年多数の研究機関や大学が集まります。統計によると、今年は合計 11,532 件の論文が投稿され、2,719 件が採択され、採択率は 23.6% でした。ジョージア工科大学による CVPR2024 データの統計分析によると、研究テーマの観点から最も論文数が多いのは画像とビデオの合成と生成です (Imageandvideosyn

LLM が大量のデータを使用して大規模なコンピューター クラスターでトレーニングされていることはわかっています。このサイトでは、LLM トレーニング プロセスを支援および改善するために使用される多くの方法とテクノロジが紹介されています。今日、私たちが共有したいのは、基礎となるテクノロジーを深く掘り下げ、オペレーティング システムさえ持たない大量の「ベア メタル」を LLM のトレーニング用のコンピューター クラスターに変える方法を紹介する記事です。この記事は、機械がどのように考えるかを理解することで一般的な知能の実現に努めている AI スタートアップ企業 Imbue によるものです。もちろん、オペレーティング システムを持たない大量の「ベア メタル」を LLM をトレーニングするためのコンピューター クラスターに変換することは、探索と試行錯誤に満ちた簡単なプロセスではありませんが、Imbue は最終的に 700 億のパラメータを備えた LLM のトレーニングに成功しました。プロセスが蓄積する

C言語は広く使われているプログラミング言語であり、コンピュータプログラミングを志す人にとって必ず学ばなければならない基本的な言語の一つです。ただし、初心者にとって、特に関連する学習ツールや教材が不足しているため、新しいプログラミング言語を学習するのは難しい場合があります。この記事では、C言語初心者がすぐに始められるプログラミングソフトを5つ紹介します。最初のプログラミング ソフトウェアは Code::Blocks でした。 Code::Blocks は、無料のオープンソース統合開発環境 (IDE) です。

タイトル: 技術初心者必読: 具体的なコード例を必要とする C 言語と Python の難易度分析 今日のデジタル時代において、プログラミング技術はますます重要な能力となっています。ソフトウェア開発、データ分析、人工知能などの分野で働きたい場合でも、単に興味があってプログラミングを学びたい場合でも、適切なプログラミング言語を選択することが最初のステップです。数あるプログラミング言語の中でも、C言語とPythonは広く使われているプログラミング言語であり、それぞれに独自の特徴があります。この記事ではC言語とPythonの難易度を分析します。

Machine Power Report 編集者: Yang Wen 大型モデルや AIGC に代表される人工知能の波は、私たちの生活や働き方を静かに変えていますが、ほとんどの人はまだその使い方を知りません。そこで、直感的で興味深く、簡潔な人工知能のユースケースを通じてAIの活用方法を詳しく紹介し、皆様の思考を刺激するコラム「AI in Use」を立ち上げました。また、読者が革新的な実践的な使用例を提出することも歓迎します。ビデオリンク: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ 最近、Xiaohongshu で一人暮らしの女の子の生活 vlog が人気になりました。イラスト風のアニメーションといくつかの癒しの言葉を組み合わせれば、数日で簡単に習得できます。

検索拡張生成 (RAG) は、検索を使用して言語モデルを強化する手法です。具体的には、言語モデルは回答を生成する前に、広範な文書データベースから関連情報を取得し、この情報を使用して生成プロセスをガイドします。このテクノロジーにより、コンテンツの精度と関連性が大幅に向上し、幻覚の問題を効果的に軽減し、知識の更新速度が向上し、コンテンツ生成の追跡可能性が向上します。 RAG は間違いなく、人工知能研究の中で最もエキサイティングな分野の 1 つです。 RAGについて詳しくは、当サイトのコラム記事「大型モデルの欠点を補うことに特化したRAGの新展開とは?」を参照してください。このレビューはそれを明確に説明しています。」しかし、RAG は完璧ではなく、ユーザーはそれを使用するときにいくつかの「問題点」に遭遇することがよくあります。最近、NVIDIA の生成 AI 高度なソリューション
