众核上的数据仓库并行优化
近几年众核硬件逐渐被应用到数据仓库产品当中。目前主要的众核硬件包括以Intel SCC为代表的众核CPU、以Intel志强融核系列为代表的众核协处理器、以NVIDIA和AMD为代表的众核GPU。本文第一章介绍目前的主要的众核硬件及其特性,并从性价比和通用性方面对众核硬
近几年众核硬件逐渐被应用到数据仓库产品当中。目前主要的众核硬件包括以Intel SCC为代表的众核CPU、以Intel志强融核系列为代表的众核协处理器、以NVIDIA和AMD为代表的众核GPU。本文第一章介绍目前的主要的众核硬件及其特性,并从性价比和通用性方面对众核硬件进行比较;第二章介绍目前数据仓库中典型操作符在众核硬件上的优化技术。
1. 主要众核硬件
1.1. 多核CPU
多核的CPU虽然不是严格意义上的众核,但是在目前的很多研究中都将多核CPU视为和众核具相似的硬件而进行比较研究。多核CPU目前通常认为是8核及以下的通用CPU,每个核都有独立的L2和L1 Cache,多个核之间需要通过共享的内存或者L3 Cache才能交换数据。但核心数量并不是多核与众核的严格分界线,Intel目前核数最多CPU可以达到10个核。多核与众核的主要区别在于通用性和体系结构方面。1.2. 众核CPU
众核的CPU目前并不常见,在市场上没有销售。以Intel SCC为代表的众核CPU只提供给合作的高校和科研院所作为研究用途。在近几年的论文中常可以看见SCC的身影。Intel SCC中集成了48个对等的核,即每个核的功能和性能都是一样的,且每个核都有专属的L2 Cache。每两个核集成在一个tile中,共24个tile组成一个4*6的矩阵,之间通过CPU内部的告诉总线连接。每个tile中的两个核共享一部分(16KB)L1 Cache,这部分共享的L1 Cache成为MPB(Massage Passing Buffer)。所有tile中的MPB又可以被任意一个核访问,从而构成了一个384KB L1 Cache。
SCC中的每个核具有1GHz的主频和较强的逻辑计算能力,支持的指令集和普通的CPU类似。从而在增加核数的同时保证了通用性。此外,特殊的Cache设计使得可以针对具体的计算任务做出优化。
1.3. 众核协处理器
协处理器通过高速总线和CPU连接或者PCI-E借口连接到北桥上,是辅助CPU完成特定计算任务的计算器件。ARM架构的微处理器可以支持多大数十个协处理器,在嵌入式终端和智能设备中应用非常广泛。在通用计算平台上,Intel也推出了志强融核系列的协处理产品。至强融核协处理器其实是一款搭载众核处理器、显存(GDDR5)、PCI-E16X接口的外设,通过PCI-E插槽接入主板,通过北桥和CPU、主存连接。
目前的志强融合协处理器最多继承61个核,其中一个核是处理PCI-E数据传输的,其他60个核是对等的计算单元。支持的板载内存的类型为DDR5,具有300+GB/s的访存带宽,最大可以支持16GB的板载内存。较GPU而言,协处理器支持的板载访存带宽相近,但支持的最大内存大出1-2倍,同时协处理器的核数相对较少、但逻辑计算能力更强、通用性更好。
1.4. 众核GPU
众核GPU是目前最为常见的众核硬件。主要的GPU厂商NVIDA和AMD都提供了众核的GPU产品。其中NVIDA实现的CUDA技术应用已经非常广泛。在架构上GPU和协处理器有相似之处。但众核GPU中的核心计算能力较强、逻辑能力很差,因此GPU的专用性更强,通用性更差。此外,GPU中的核心通常被分为若干个组,每个组中有几十个核心,这些核心可以同时执行同一条指令、处理不同的数据,即SIMP。1.5. 众核硬件比较
在通用性方面1、多核CPU:通用,直接通过数据总线访问系统内存,带宽20-30GB/s;
2、众核 CPU:通用性稍差,架构类似GPU和协处理器,但可以直接访问系统主存,目前还没推广
3、众核协处理器:和GPU类似,单核的计算能力和逻辑运算能力更强,通用性更好一些。
4、众核GPU: 浮点计算能力强,逻辑运算能力差,显存几GB,带宽200GB/s,但需要通过PCI-E总线从主存取数据(PCI-E 16x :4GB/s),通用性差
能耗、性价比的比较
GPGPU的性价比最高、能耗最低,但软件开发成本高,在部分算法中性能并不突出 Many-core CPU总体好于multi-core CPU Multi-core CPU在某些复杂计算中表现突出。
总结下来,除了通用的多核CPU以外,many-core并不是共享所有的主存和cache的,无论CPU还是GPU都是NUMA(Non Uniform Memory Access Architecture,非统一内存访问架构)的架构。 算法要访问数据。要提高并行度,就要提高数据访问的局部性 GPU和协处理器访问系统内存的带宽会比访问本地内存地带宽低50倍以上。
2. 众核上数据仓库优化技术
2.1. 缓存的优化
众核处理器通常在缓存方面都有着和通用的多核CPU不同的设计,比如SCC就支持L1 Cache的跨核访问。在数据仓库算法中,表扫面算法由于数据局部性不好,数据如果经过多级缓存进入核中处理势必会影响效率,因此优化时可以针对表扫描算法,将数据直接加载到MPB中,进而进入核中做谓词过滤。2.2. 连接算法的优化
数据仓库中常用的连接算法包括sort-merge连接和hash连接。Sort-merge连接由于排序和归并的过程中,多个线程(核)并不需要共享数据,因此很适合在众核硬件上实现。但是sort-merge本身有很多的局限性,比如数据仓库中的连接通常在维表和事实表之间进行,而事实表是非常大的,sort-merge要求事实表实现在连接属性上排序,排序的代价是非常大的。
更为通用的hash连接由于在hash划分数据和连接时,多个线程(核)需要访问共享的哈希表和哈希桶,如果不做优化,在众核上是不可能有明显的性能提升的。因此出现了一些优化的技术。
常见的优化技术是基于Bucket的,即先将数据划分为不相关的Bucket再做链接。那么算法就分为分桶和连接两个部分。
在分桶阶段,为了利用多核达到性能的提升,也要保证多个核心不能有共享的数据,常用的算法有两种:
1、类似quickSort的分桶算法
Step1: 将array中hash值末位为0和为1的元素分开
Step2: 对分开的两个子array分别按照hash值末两位的值分开,依次递归,直到子array中元素个数小于某个阈值
2、两阶段分桶算法
Hash桶的个数是固定的,第一阶段,各个core将数据表的一段hash到自己的桶里。 第二阶段,各个core将某一列上的桶合并。如图2.1所示。
第一种算法的复杂度较高一些(n*log n),后一种算法虽然是线性的时间复杂度,但是要求分桶的个数预先固定,在数据倾斜的情况下就会导致分桶的不均衡。
分桶之后的连接算法可以采用基于位图的连接算法。如图2.2所示,第一阶段是分桶,第二阶段是在左表的一个分桶上计算出一个位图,其实就是一个布隆过滤器,第三阶段基于左表的位图来过滤右表的分桶,避免了不必要的连接操作,也就避免的大量的内存访问。
此外,连接算法的优化方面,由于数据仓库中维表很小,可以在维表上做完谓词过滤、得到一个布尔向量,将布尔向量读入到各个核的缓冲区中,和事实表做连接。
还有一种称为Invisible Join 的连接优化技术,是一种查询重写技术。由于维表比较小,当维表和事实表连接时,将连接条件转换成事实表上的谓词。 如:事实表的一个外键连接到维表的一个主键上。如果维表的主键上的值在一个连续范围内,可以将其重写成事实表外键上的一个between谓词,从而避免了反复对维表的随机访问。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

マルチモーダル文書理解機能のための新しい SOTA!アリババの mPLUG チームは、最新のオープンソース作品 mPLUG-DocOwl1.5 をリリースしました。これは、高解像度の画像テキスト認識、一般的な文書構造の理解、指示の遵守、外部知識の導入という 4 つの主要な課題に対処するための一連のソリューションを提案しています。さっそく、その効果を見てみましょう。複雑な構造のグラフをワンクリックで認識しMarkdown形式に変換:さまざまなスタイルのグラフが利用可能:より詳細な文字認識や位置決めも簡単に対応:文書理解の詳しい説明も可能:ご存知「文書理解」 「」は現在、大規模な言語モデルの実装にとって重要なシナリオです。市場には文書の読み取りを支援する多くの製品が存在します。その中には、主にテキスト認識に OCR システムを使用し、テキスト処理に LLM と連携する製品もあります。

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、
