ホームページ データベース mysql チュートリアル libmemcached一致性hash算法详解(2)

libmemcached一致性hash算法详解(2)

Jun 07, 2016 pm 03:26 PM
hash 一貫性 アルゴリズム 詳しい説明

author: selfimpr blog: http://blog.csdn.net/lgg201 mail: lgg860911@yahoo.com.cn libmemcached一致性hash算法详解(1)----php-memcached客户端一致性哈希与crc算法共用产生的bug分析 这里就不废话了, 直接上代码: #include stdio.h#include stdlib.h#incl

author: selfimpr

blog: http://blog.csdn.net/lgg201

mail: lgg860911@yahoo.com.cn



libmemcached一致性hash算法详解(1)----php-memcached客户端一致性哈希与crc算法共用产生的bug分析


这里就不废话了, 直接上代码:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

/*---------------------------以下部分摘自libmemcached/crc.c--------------------------*/
static const uint32_t crc32tab[256] = {
  0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
  0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
  0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
  0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
  0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
  0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
  0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
  0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
  0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
  0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
  0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
  0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
  0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
  0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
  0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
  0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
  0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
  0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
  0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
  0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
  0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
  0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
  0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
  0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
  0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
  0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
  0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
  0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
  0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
  0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
  0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
  0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
  0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
  0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
  0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
  0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
  0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
  0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
  0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
  0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
  0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
  0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
  0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
  0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
  0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
  0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
  0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
  0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
  0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
  0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
  0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
  0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
  0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
  0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
  0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
  0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
  0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
  0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
  0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
  0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
  0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
  0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
  0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
  0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};

uint32_t hash_crc32(const char *key, size_t key_length)
{
  uint32_t x;
  uint32_t crc= UINT32_MAX;

  for (x= 0; x > 8) ^ crc32tab[(crc ^ (key[x])) & 0xff];

  return ~crc;
}
/*---------------------------以上部分摘自libmemcached/crc.c--------------------------*/

//libmemcached中使用crc求hash值的方法
uint32_t memcached_hash_crc32(const char *key, size_t key_len) {
	return ((hash_crc32(key, key_len) >> 16) & 0x7fff);
}

/**
 * 模拟libmemcached的一致性hash算法中的点  
 * libmemcached中, 假设有A,B两台服务器, 则其一致性算法为:
 * 	1. 假设每台服务器100个点
 * 	2. 每个点是一个类似下面的server_t的结构, 一个字段存放server的索引, 一个字段存放值
 * 	3. 每个服务器构造自己对应的100个点时, 对host:port-i求hash值, 其中host为服务器地址, port为端口, i为0-99的数
 * 	4. 将两个服务器总共产生的200个点放入一个数组, 按照点的value(即上面求得的hash值)排序
 * 下面是拿到一个key进行分布时的策略
 * 	1. 对key求一个hash值
 * 	2. 从上面得到的服务器的200个点的数组中, 二分查找离这个key产生的hash值最近的点
 * 	3. 拿到这个点对应的服务器
 */
typedef struct _server {
	char host[128];
	uint32_t value;
} server_t;

//libmemcached中点的比较函数
int server_cmp(const void *s1, const void *s2) {
	server_t *cs1 = (server_t *)s1;
	server_t *cs2 = (server_t *)s2;
	if ( cs1->value == cs2->value ) return 0;
	else if ( cs1->value > cs2->value ) return 1;
	else return -1;
}

//打印从servers开始的n个点
void print_servers(const server_t *servers, int n) {
	int i = 0;
	while ( i host, (servers + i)->value);
		i ++;
	}
}
//构造示例性的2台服务器产生的点, libmemcached中的算法简化了就是如此
server_t *construct_servers() {
	server_t *servers = malloc(sizeof(server_t) * 200);
	int i = 0, j;
	int server_length = 0;
	char server[128];
	while ( i host, server);
			(servers + i * 100 + j)->value = memcached_hash_crc32(server, server_length);
		}
		i ++;
	}
	qsort(servers, 200, sizeof(server_t), server_cmp);
	//print_servers(servers, 200);
	return servers;
}
//给定一个key, 查找对应的服务器, libmemcached的查找算法简化板
void search(server_t *servers, int num, char *key, int key_len) {
	server_t *begin, *left, *middle, *right, *end;	
	begin = left = servers;
	end = right = servers + num;
	uint32_t hash;
	hash = memcached_hash_crc32(key, key_len);

	while (left value host);
}

//下面是模拟的一个分布测试程序
void main(void) {
	server_t *servers;
	uint32_t hash;
	char key[128];
	int i = 0, key_len;

	servers = construct_servers();

	while ( i <br>
<br>


</string.h></stdint.h></stdlib.h></stdio.h>
ログイン後にコピー
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 Mar 26, 2024 pm 12:41 PM

上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

Win11での管理者権限の取得について詳しく解説 Win11での管理者権限の取得について詳しく解説 Mar 08, 2024 pm 03:06 PM

Windows オペレーティング システムは世界で最も人気のあるオペレーティング システムの 1 つであり、その新バージョン Win11 が大きな注目を集めています。 Win11 システムでは、管理者権限の取得は重要な操作であり、管理者権限を取得すると、ユーザーはシステム上でより多くの操作や設定を実行できるようになります。この記事では、Win11システムで管理者権限を取得する方法と、権限を効果的に管理する方法を詳しく紹介します。 Win11 システムでは、管理者権限はローカル管理者とドメイン管理者の 2 種類に分かれています。ローカル管理者はローカル コンピュータに対する完全な管理権限を持っています

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

Oracle SQLの除算演算の詳細説明 Oracle SQLの除算演算の詳細説明 Mar 10, 2024 am 09:51 AM

OracleSQL の除算演算の詳細な説明 OracleSQL では、除算演算は一般的かつ重要な数学演算であり、2 つの数値を除算した結果を計算するために使用されます。除算はデータベース問合せでよく使用されるため、OracleSQL での除算演算とその使用法を理解することは、データベース開発者にとって重要なスキルの 1 つです。この記事では、OracleSQL の除算演算に関する関連知識を詳細に説明し、読者の参考となる具体的なコード例を示します。 1. OracleSQL での除算演算

C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる Apr 02, 2024 pm 05:36 PM

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる 人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる Mar 22, 2024 pm 10:10 PM

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 Jun 06, 2024 pm 12:33 PM

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

PHPモジュロ演算子の役割と使い方を詳しく解説 PHPモジュロ演算子の役割と使い方を詳しく解説 Mar 19, 2024 pm 04:33 PM

PHP のモジュロ演算子 (%) は、2 つの数値を除算した余りを取得するために使用されます。この記事では、モジュロ演算子の役割と使用法について詳しく説明し、読者の理解を深めるために具体的なコード例を示します。 1. モジュロ演算子の役割 数学では、整数を別の整数で割ると、商と余りが得られます。たとえば、10 を 3 で割ると、商は 3 になり、余りは 1 になります。モジュロ演算子は、この剰余を取得するために使用されます。 2. モジュロ演算子の使用法 PHP では、% 記号を使用してモジュロを表します。

See all articles