ホームページ データベース mysql チュートリアル YouTube开源项目Vitess:打造高性能MySQL前端

YouTube开源项目Vitess:打造高性能MySQL前端

Jun 07, 2016 pm 03:34 PM
youtube オープンソース 建てる プロジェクト ハイパフォーマンス

项目简介 关系型数据库(如MySQL)最初并没有针对大型Web应用进行构建和优化,Vitess项目的目标是推动MySQL数据库面向大型Web应用的扩展性。 Vtocc是vitess项目中第一个可用的产品,它的作用是作为MySQL的前端,为接收和发送SQL命令提供一个RPC接口。它能够

YouTube开源项目Vitess:打造高性能MySQL前端

项目简介

关系型数据库(如MySQL)最初并没有针对大型Web应用进行构建和优化,Vitess项目的目标是推动MySQL数据库面向大型Web应用的扩展性。

Vtocc是vitess项目中第一个可用的产品,它的作用是作为MySQL的前端,为接收和发送SQL命令提供一个RPC接口。它能够在少量且吞吐量合理(~10kqps)的数据库连接上高效复用大量的传入连接(10K+)。另外,它还内置了SQL语法分析器,使得服务器有能力理解并优化处理接收到的查询语句。

Vtocc已经在许多大型生产环境中有所应用,例如,YouTube全新的MySQL服务架构以其为核心。

特性概览

  • Python DBAPI 2.0兼容的客户端接口(vt_occ2.py)
  • Go语言数据库/SQL兼容的客户端接口
  • 支持基于HTTP或TCP套接字的多种协议
  • 支持绑定变量查询,支持查询缓存:可避免重复分析,高效复用查询计划
  • 支持连接池
  • 事务处理管理:可以限制事务处理的并发连接数
  • DML注释:每个DML语句都包含一个注释区域,以标识它所改动行的主键
  • 内置可靠性解决方案
    • 强化查询:可以为子查询重用正在执行的查询
    • 限制查询返回的行数量的最大值
    • 可终止运行时间过长无响应的事务
    • 可终止运行时间过长无法返回结果的查询
    • 可自动终止后台空闲连接,以避免出现脱机数据库错误

Vtocc未来可能会具备的新特性:

  • 支持行缓存的一致性,重写查询,以最大化行缓存的利用率
  • 内置binlog解释器,支持由vtocc注入的提供行变更更新流的DML文档分析
  • 支持DDL
  • 支持持久性连接 (张志平/编译)

项目链接:Vitess Project

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースのフリーテキスト注釈ツールのおすすめ 10 選 オープンソースのフリーテキスト注釈ツールのおすすめ 10 選 Mar 26, 2024 pm 08:20 PM

テキスト注釈は、テキスト内の特定のコンテンツにラベルまたはタグを対応させる作業です。その主な目的は、特に人工知能の分野で、より深い分析と処理のためにテキストに追加情報を提供することです。テキスト注釈は、人工知能アプリケーションの教師あり機械学習タスクにとって非常に重要です。これは、自然言語テキスト情報をより正確に理解し、テキスト分類、感情分析、言語翻訳などのタスクのパフォーマンスを向上させるために AI モデルをトレーニングするために使用されます。テキスト アノテーションを通じて、AI モデルにテキスト内のエンティティを認識し、コンテキストを理解し、新しい同様のデータが出現したときに正確な予測を行うように教えることができます。この記事では主に、より優れたオープンソースのテキスト注釈ツールをいくつか推奨します。 1.LabelStudiohttps://github.com/Hu

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

AIはフェルマーの最終定理を克服できるか?数学者は100ページの証明をコードに変えるために5年間のキャリアを放棄した AIはフェルマーの最終定理を克服できるか?数学者は100ページの証明をコードに変えるために5年間のキャリアを放棄した Apr 09, 2024 pm 03:20 PM

フェルマーの最終定理、AIに征服されようとしている?そして、全体の中で最も意味のある部分は、AI が解決しようとしているフェルマーの最終定理は、まさに AI が役に立たないことを証明するものであるということです。かつて、数学は純粋な人間の知性の領域に属していましたが、現在、この領域は高度なアルゴリズムによって解読され、踏みにじられています。画像 フェルマーの最終定理は、何世紀にもわたって数学者を悩ませてきた「悪名高い」パズルです。それは 1993 年に証明され、現在数学者たちはコンピュータを使って証明を再現するという大きな計画を立てています。彼らは、このバージョンの証明に含まれる論理的エラーがコンピュータによってチェックできることを望んでいます。プロジェクトアドレス: https://github.com/riccardobrasca/flt

推奨: 優れた JS オープンソースの顔検出および認識プロジェクト 推奨: 優れた JS オープンソースの顔検出および認識プロジェクト Apr 03, 2024 am 11:55 AM

顔の検出および認識テクノロジーは、すでに比較的成熟しており、広く使用されているテクノロジーです。現在、最も広く使用されているインターネット アプリケーション言語は JS ですが、Web フロントエンドでの顔検出と認識の実装には、バックエンドの顔認識と比較して利点と欠点があります。利点としては、ネットワーク インタラクションの削減とリアルタイム認識により、ユーザーの待ち時間が大幅に短縮され、ユーザー エクスペリエンスが向上することが挙げられます。欠点としては、モデル サイズによって制限されるため、精度も制限されることが挙げられます。 js を使用して Web 上に顔検出を実装するにはどうすればよいですか? Web 上で顔認識を実装するには、JavaScript、HTML、CSS、WebRTC など、関連するプログラミング言語とテクノロジに精通している必要があります。同時に、関連するコンピューター ビジョンと人工知能テクノロジーを習得する必要もあります。 Web 側の設計により、次の点に注意してください。

Alibaba 7B マルチモーダル文書理解の大規模モデルが新しい SOTA を獲得 Alibaba 7B マルチモーダル文書理解の大規模モデルが新しい SOTA を獲得 Apr 02, 2024 am 11:31 AM

マルチモーダル文書理解機能のための新しい SOTA!アリババの mPLUG チームは、最新のオープンソース作品 mPLUG-DocOwl1.5 をリリースしました。これは、高解像度の画像テキスト認識、一般的な文書構造の理解、指示の遵守、外部知識の導入という 4 つの主要な課題に対処するための一連のソリューションを提案しています。さっそく、その効果を見てみましょう。複雑な構造のグラフをワンクリックで認識しMarkdown形式に変換:さまざまなスタイルのグラフが利用可能:より詳細な文字認識や位置決めも簡単に対応:文書理解の詳しい説明も可能:ご存知「文書理解」 「」は現在、大規模な言語モデルの実装にとって重要なシナリオです。市場には文書の読み取りを支援する多くの製品が存在します。その中には、主にテキスト認識に OCR システムを使用し、テキスト処理に LLM と連携する製品もあります。

リリースされたばかりの!ワンクリックでアニメ風の画像を生成するオープンソース モデル リリースされたばかりの!ワンクリックでアニメ風の画像を生成するオープンソース モデル Apr 08, 2024 pm 06:01 PM

最新の AIGC オープンソース プロジェクト、AnimagineXL3.1 をご紹介します。このプロジェクトは、アニメをテーマにしたテキストから画像へのモデルの最新版であり、より最適化された強力なアニメ画像生成エクスペリエンスをユーザーに提供することを目的としています。 AnimagineXL3.1 では、開発チームは、モデルのパフォーマンスと機能が新たな高みに達することを保証するために、いくつかの重要な側面の最適化に重点を置きました。まず、トレーニング データを拡張して、以前のバージョンのゲーム キャラクター データだけでなく、他の多くの有名なアニメ シリーズのデータ​​もトレーニング セットに含めました。この動きによりモデルの知識ベースが充実し、さまざまなアニメのスタイルやキャラクターをより完全に理解できるようになります。 AnimagineXL3.1 では、特別なタグと美学の新しいセットが導入されています

Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Apr 29, 2024 pm 04:55 PM

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

1.3ミリ秒には1.3ミリ秒かかります。清華社の最新オープンソース モバイル ニューラル ネットワーク アーキテクチャ RepViT 1.3ミリ秒には1.3ミリ秒かかります。清華社の最新オープンソース モバイル ニューラル ネットワーク アーキテクチャ RepViT Mar 11, 2024 pm 12:07 PM

論文のアドレス: https://arxiv.org/abs/2307.09283 コードのアドレス: https://github.com/THU-MIG/RepViTRepViT は、モバイル ViT アーキテクチャで優れたパフォーマンスを発揮し、大きな利点を示します。次に、この研究の貢献を検討します。記事では、主にモデルがグローバル表現を学習できるようにするマルチヘッド セルフ アテンション モジュール (MSHA) のおかげで、軽量 ViT は一般的に視覚タスクにおいて軽量 CNN よりも優れたパフォーマンスを発揮すると述べられています。ただし、軽量 ViT と軽量 CNN のアーキテクチャの違いは十分に研究されていません。この研究では、著者らは軽量の ViT を効果的なシステムに統合しました。

See all articles