目次
1. 数据插入PK
1.1. 循环插入,执行时间为38026毫秒
1.2.   事务循环插入,执行时间为6640毫秒
1.3.   批量插入,执行时间为220毫秒
1.4.   CTE插入,执行时间也为220毫秒
2.  数据删除PK
2.1.   循环删除,执行时间为1240毫秒
2.2.  批量删除,执行时间为106毫秒
1. 保留需要的数据之新表中->TRUNCATE原表数据->还原之前保留的数据之原表中
2. 新建表结构->批量插入需要保留的数据->DROP原表->重命名新表为原表

sqlserver 删除大数据

Jun 07, 2016 pm 03:39 PM
sqlserver 消去 データ

一、写在前面 - 想说爱你不容易 为了升级数据库至SQL Server 2008 R2,拿了一台现有的PC做测试,数据库从正式库Restore(3个数据库大小夸张地达到100G),而机器内存只有可怜的4G,不仅要承担DB Server角色,同时也要作为Web Server,可想而知这台机器的命运是

一、写在前面 - 想说爱你不容易

  为了升级数据库至SQL Server 2008 R2,拿了一台现有的PC做测试,数据库从正式库Restore(3个数据库大小夸张地达到100G+),而机器内存只有可怜的4G,不仅要承担DB Server角色,同时也要作为Web Server,可想而知这台机器的命运是及其惨烈的,只要MS SQL Server一启动,内存使用率立马飙升至99%。没办法,只能升内存,两根8G共16G的内存换上,结果还是一样,内存瞬间被秒杀(CPU利用率在0%徘徊)。由于是PC机,内存插槽共俩,目前市面上最大的单根内存为16G(价格1K+),就算买回来估计内存还是不够(卧槽,PC机伤不起啊),看样子别无它法 -- 删数据!!!

  删除数据 - 说的容易, 不就是DELETE吗?靠,如果真这么干,我XXX估计能“知道上海凌晨4点的样子”(KB,Sorry,谁让我是XXX的Programmer,哥在这方面绝对比你牛X),而且估计会暴库(磁盘空间不足,产生的日志文件太大了)。

二、沙场点兵 - 众里寻他千百度

  为了更好地阐述我所遇到的困难和问题,有必要做一些必要的测试和说明,同时这也是对如何解决问题的一种探究。因为毕竟这个问题的根本是如何来更好更快的操作数据,说到底就是DELETE、UPDATE、INSERT、TRUNCATE、DROP等的优化操作组合,我们的目的就是找出最优最快最好的方法。为了便于测试,准备了一张测试表Employee

sqlserver 删除大数据

<span>--</span><span>Create table Employee</span>
<span>CREATE</span> <span>TABLE</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span> (
    <span>[</span><span>EmployeeNo</span><span>]</span> <span>INT</span> <span>PRIMARY</span> <span>KEY</span>,
    <span>[</span><span>EmployeeName</span><span>]</span> <span>[</span><span>nvarchar</span><span>]</span>(<span><strong>50</strong></span>) <span>NULL</span>,
    <span>[</span><span>CreateUser</span><span>]</span> <span>[</span><span>nvarchar</span><span>]</span>(<span><strong>50</strong></span>) <span>NULL</span>,
    <span>[</span><span>CreateDatetime</span><span>]</span> <span>[</span><span>datetime</span><span>]</span> <span>NULL</span>
);
ログイン後にコピー

sqlserver 删除大数据

1. 数据插入PK

1.1. 循环插入,执行时间为38026毫秒

sqlserver 删除大数据

<span>--</span><span>循环插入</span>
<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Index</span> <span>INT</span> <span>=</span> <span><strong>1</strong></span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>WHILE</span> <span>@Index</span> <span> <span><strong>100000</strong></span>
<span>BEGIN</span>
    <span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>VALUES</span>(<span>@Index</span>, <span>'</span><span>Employee_</span><span>'</span> <span>+</span> <span>CAST</span>(<span>@Index</span> <span>AS</span> <span>CHAR</span>(<span><strong>6</strong></span>)), <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>());
    <span>SET</span> <span>@Index</span> <span>=</span> <span>@Index</span> <span>+</span> <span><strong>1</strong></span>;
<span>END</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;</span>
ログイン後にコピー

sqlserver 删除大数据

1.2.   事务循环插入,执行时间为6640毫秒

sqlserver 删除大数据

<span>--</span><span>事务循环</span>
<span>BEGIN</span> <span>TRAN</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Index</span> <span>INT</span> <span>=</span> <span><strong>1</strong></span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>WHILE</span> <span>@Index</span> <span> <span><strong>100000</strong></span>
<span>BEGIN</span>
    <span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>VALUES</span>(<span>@Index</span>, <span>'</span><span>Employee_</span><span>'</span> <span>+</span> <span>CAST</span>(<span>@Index</span> <span>AS</span> <span>CHAR</span>(<span><strong>6</strong></span>)), <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>());
    <span>SET</span> <span>@Index</span> <span>=</span> <span>@Index</span> <span>+</span> <span><strong>1</strong></span>;
<span>END</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;

<span>COMMIT</span>;</span>
ログイン後にコピー

sqlserver 删除大数据

1.3.   批量插入,执行时间为220毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime)
<span>SELECT</span> <span>TOP</span>(<span><strong>100000</strong></span>) EmployeeNo <span>=</span> ROW_NUMBER() <span>OVER</span> (<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>), <span>'</span><span>Employee_</span><span>'</span>, <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>()
<span>FROM</span> SYS.COLUMNS <span>AS</span> C1 <span>CROSS</span> <span>JOIN</span> SYS.COLUMNS <span>AS</span> C2
<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
ログイン後にコピー

sqlserver 删除大数据

1.4.   CTE插入,执行时间也为220毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

;<span>WITH</span> CTE(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>AS</span>(
    <span>SELECT</span> <span>TOP</span>(<span><strong>100000</strong></span>) EmployeeNo <span>=</span> ROW_NUMBER() <span>OVER</span> (<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>), <span>'</span><span>Employee_</span><span>'</span>, <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>()
    <span>FROM</span> SYS.COLUMNS <span>AS</span> C1 <span>CROSS</span> <span>JOIN</span> SYS.COLUMNS <span>AS</span> C2
    <span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>
)
<span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span> <span>SELECT</span> EmployeeNo, EmployeeName, CreateUser, CreateDatetime <span>FROM</span> CTE;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
ログイン後にコピー

sqlserver 删除大数据

小结:

  • 按执行时间,效率依次为:CTE和批量插入效率相当,速度最快,事务插入次之,单循环插入速度最慢;
  • 单循环插入速度最慢是由于INSERT每次都有日志,事务插入大大减少了写入日志次数,批量插入只有一次日志,CTE的基础是CLR,善用速度是最快的。

 

2.  数据删除PK

2.1.   循环删除,执行时间为1240毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>DELETE</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
ログイン後にコピー

sqlserver 删除大数据

2.2.  批量删除,执行时间为106毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>SET</span> <span>ROWCOUNT</span> <span><strong>100000</strong></span>;

<span>WHILE</span> <span><strong>1</strong></span> <span>=</span> <span><strong>1</strong></span>
<span>BEGIN</span>
    <span>BEGIN</span> <span>TRAN</span>
    <span>DELETE</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;
    <span>COMMIT</span>
    <span>IF</span> <span><strong>@@ROWCOUNT</strong></span> <span>=</span> <span><strong>0</strong></span>
        <span>BREAK</span>;
<span>END</span>

<span>SET</span> <span>ROWCOUNT</span> <span><strong>0</strong></span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
ログイン後にコピー

sqlserver 删除大数据

2.3.  TRUNCATE删除,执行时间为0毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>TRUNCATE</span> <span>TABLE</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
ログイン後にコピー

sqlserver 删除大数据

 小结:

  • TRUNCATE太快了,清除10W数据一点没压力,批量删除次之,最后的DELTE太慢了;
  • TRUNCATE快是因为它属于DDL语句,只会产生极少的日志,普通的DELETE不仅会产生日志,而且会锁记录。

 

三、磨刀霍霍 - 犹抱琵琶半遮面

  由上面的第二点我们知道,插入最快和删除最快的方式分别是批量插入和TRUNCATE,所以为了达到删除大数据的目的,我们也将采用这两种方式的组合,其中心思想是先把需要保留的数据存放之新表中,然后TRUNCATE原表中的数据,最后再批量把数据插回去,当然实现方式也可以随便变通。

1. 保留需要的数据之新表中->TRUNCATE原表数据->还原之前保留的数据之原表中

  脚本类似如下

<span>SELECT</span> <span>*</span> <span>INTO</span> #keep <span>FROM</span> Original <span>WHERE</span> CreateDate <span>></span> <span>'</span><span>2011-12-31</span><span>'</span>
<span>TRUNCATE</span> <span>TABLE</span> Original
<span>INSERT</span> Original <span>SELECT</span> <span>*</span> <span>FROM</span> #keep
ログイン後にコピー

  第一条语句会把所有要保留的数据先存放至表#keep中(表#keep无需手工创建,由SELECT INTO生效),#keep会Copy原始表Original的表结构。PS:如果你只想创建表结构,但不拷贝数据,则对应的脚本如下

<span>SELECT</span> <span>*</span> <span>INTO</span> #keep <span>FROM</span> Original <span>WHERE</span> <span><strong>1</strong></span> <span>=</span> <span><strong>2</strong></span>
ログイン後にコピー

  第二条语句用于清除整个表中数据,产生的日志文件基本可以忽略;第三条语句用于还原保留数据。

几点说明:

  • 你可以不用SELECT INTO,自己通过写脚本(或拷贝现有表)来创建#keep,但是后者有一个弊端,即无法通过SQL脚本来获得对应的表生成Script(我的意思是和原有表完全一致的脚本,即基本列,属性,索引,约束等),而且当要操作的表比较多时,估计你肯定会抓狂;
  • 既然第一点欠妥,那考虑新建一个同样的数据库怎么样?既可以使用现有脚本,而且生成的数据库基本一致,但是我告诉你最好别这么做,因为第一要跨库,第二,你得准备足够的磁盘空间。

 

2. 新建表结构->批量插入需要保留的数据->DROP原表->重命名新表为原表

  CREATE TABLE #keep AS (xxx) xxx -- 使用上面提到的方法(使用既有表的创建脚本),但是不能够保证完全一致;

  INSERT #keep SELECT * FROM Original where clause

  DROP TBALE Original

  EXEC SP_RENAME '#keep','Original'

  这种方式比第一种方法略快点,因为省略了数据还原(即最后一步的数据恢复),但是稍微麻烦点,因为你需要创建一张和以前原有一模一样的表结构,包括基本列、属性、约束、索性等等。

三、数据收缩 - 秋风少落叶

   数据删除后,发现数据库占用空间大小并没有发生变化,此时我们就用借助强悍的数据收缩功能了,脚本如下,运行时间不定,取决于你的数据库大小,多则几十分钟,少则瞬间秒杀

<span>DBCC</span> SHRINKDATABASE(<span>DB_NAME</span>)
ログイン後にコピー
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mdfファイルをsqlserverにインポートする方法 mdfファイルをsqlserverにインポートする方法 Apr 08, 2024 am 11:41 AM

インポート手順は次のとおりです。 MDF ファイルを SQL Server のデータ ディレクトリ (通常は C:\Program Files\Microsoft SQL Server\MSSQL\DATA) にコピーします。 SQL Server Management Studio (SSMS) でデータベースを開き、[アタッチ] を選択します。 「追加」ボタンをクリックして、MDF ファイルを選択します。データベース名を確認し、「OK」ボタンをクリックします。

指定されたオブジェクトが sqlserver データベースにすでに存在するという問題を解決する方法 指定されたオブジェクトが sqlserver データベースにすでに存在するという問題を解決する方法 Apr 05, 2024 pm 09:42 PM

SQL Server データベースに既に存在する同じ名前のオブジェクトについては、次の手順を実行する必要があります。 オブジェクトの種類 (テーブル、ビュー、ストアド プロシージャ) を確認します。 IF NOT EXISTS を使用すると、オブジェクトが空の場合に作成をスキップできます。オブジェクトにデータがある場合は、別の名前を使用するか、構造を変更してください。既存のオブジェクトを削除するには、DROP を使用します (注意してください。バックアップを推奨します)。スキーマの変更をチェックして、削除または名前変更されたオブジェクトへの参照がないことを確認します。

WeChat でブロックされたり削除されたり、永久に追加できなくなったりする可能性があるというのは本当ですか? WeChat でブロックされたり削除されたり、永久に追加できなくなったりする可能性があるというのは本当ですか? Apr 08, 2024 am 11:41 AM

1. まず、相手を永久にブロックして削除して永久に追加しないのは間違いで、ブロックして削除した後に相手を追加したい場合は、相手の同意だけが必要です。 2. ユーザーが誰かをブロックすると、相手はユーザーにメッセージを送信したり、ユーザーの友達サークルを表示したり、ユーザーと通話したりすることができなくなります。 3. ブロックとは、ユーザーの WeChat 連絡先リストから相手を削除することを意味するものではありません。 4. ユーザーが相手をブロックした後、ユーザーの WeChat 連絡先リストから相手を削除した場合、削除後に回復する方法はありません。 5. ユーザーが相手を再度友達として追加したい場合は、相手が同意してユーザーを再度追加する必要があります。

SQLサーバーのポート番号を確認する方法 SQLサーバーのポート番号を確認する方法 Apr 05, 2024 pm 09:57 PM

SQL Server のポート番号を表示するには: SSMS を開いてサーバーに接続します。オブジェクト エクスプローラーでサーバー名を見つけ、右クリックして [プロパティ] を選択します。 「接続」タブで、「TCP ポート」フィールドを表示します。

sqlserver サービスを開始できない場合の対処方法 sqlserver サービスを開始できない場合の対処方法 Apr 05, 2024 pm 10:00 PM

SQL Server サービスの開始に失敗した場合の解決手順は次のとおりです。 エラー ログを確認して、根本原因を特定します。サービス アカウントにサービスを開始する権限があることを確認してください。依存関係サービスが実行されているかどうかを確認します。ウイルス対策ソフトウェアを無効にします。 SQL Server のインストールを修復します。修復が機能しない場合は、SQL Server を再インストールします。

sqlserverで誤って削除したデータベースを回復する方法 sqlserverで誤って削除したデータベースを回復する方法 Apr 05, 2024 pm 10:39 PM

SQL Server データベースを誤って削除した場合は、次の手順を実行して回復できます: データベース アクティビティの停止、ログ ファイルのバックアップ、データベース ログの確認、回復オプション: バックアップからの復元、トランザクション ログからの復元、DBCC CHECKDB の使用、3 番目の使用パーティーツール。データ損失を防ぐために、データベースを定期的にバックアップし、トランザクション ログを有効にしてください。

iPhoneのセルラーデータインターネット速度が遅い:修正 iPhoneのセルラーデータインターネット速度が遅い:修正 May 03, 2024 pm 09:01 PM

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

インストールが失敗した場合に sqlserver を削除するにはどうすればよいですか? インストールが失敗した場合に sqlserver を削除するにはどうすればよいですか? Apr 05, 2024 pm 11:27 PM

SQL Server のインストールが失敗した場合は、次の手順に従ってクリーンアップできます。 SQL Server をアンインストールする レジストリ キーを削除する ファイルとフォルダーを削除する コンピューターを再起動する

See all articles