数据持久化编程学习总结
一、JDBC编程 1. 使用JDBC规范 在数据库编程方面,最先使用的数据持久化技术无疑是JDBC 可以说JDBC(Java Data Base Connectivity)是学习其它数据持久化技术的基础 Java中访问数据库使用的就是JDBC,基本操作有CRUD(Create-Read-Update-Delete) JDBC定义
一、JDBC编程
1. 使用JDBC规范
在数据库编程方面,最先使用的数据持久化技术无疑是JDBC
可以说JDBC(Java Data Base Connectivity)是学习其它数据持久化技术的基础
Java中访问数据库使用的就是JDBC,基本操作有CRUD(Create-Read-Update-Delete)
JDBC定义了数据库的连接,SQL语句的执行以及查询结果集的遍历,一般操作步骤如下:
1. 注册驱动:DriverManager.registerDriver(driver);
2. 建立连接:Connection conn = DriverManager.getConnection(url, "username","password");
3. 获取对象:Statement stmt = conn.createStatement();
4. 执行查询:ResultSet rs = stmt.executeQuery(sqlstring);
5. 处理结果:while (rs.next()){doing something about the result}
6. 释放连接:rs.close(); stmt.close();conn.close();
总结:在初学阶段,无疑是必须学会使用原生态的JDBC进行数据库编程
优点:JDBC为数据库编程提供了可能,规范了数据库的连接和操作方式
缺点:JDBC API和SQL语句与Servlet和JSP夹杂在一起
每次进行数据库操作都要进行对象的创建与销毁
二、JDBC高级应用
1. 使用DAO模式
大量进行JDBC编程后,就积累了不少经验和发现不少缺点,于是对JDBC进行分层和模块化
而DAO(Data Access Object)和POJO(Plain Old Java Object)则是JDBC下常用的模式
在DAO模式出现之前,操作数据库的代码与业务代码均出现在Servlet或者JSP中
SQL语句、Java语句和Html语句夹杂在一起了,导致开发效率很底下
而使用了DAO模式后,所有的JDBC API和SQL语句均移到了DAO层
实现分层后Servlet、JSP只与Java Bean、DAO层交互,而不会有JDBC API和SQL语句
这无疑增加了程序的清晰性、可读性,而且其可重用性比较好
2. 使用DBCP
在JDBC编程中,每一次的数据操作,都要创建并销毁conn对象、stmt对象和rs对象
繁琐的创建和销毁这些对象无疑会消耗一定的时间和IO资源,在并发访问时尤其明显
使用数据源DBCP(DataBase connection pool)技术可以解决这一问题
数据源一般配置在xml文件中,使用数据源会自动进行优化和管理,一般配置如下:
<property name="driverClassName" value="driverClassName"></property> <property name="url" value="jdbc url"></property> <property name="username" value="username"></property> <property name="password" value="password"></property>
总结:DAO模式解决了JDBC API和SQL语句与JSP的夹杂问题并实现了分层
DBCP则为繁琐的创建和销毁对象提供了解决方法
三、使用ORM框架Hibernate进行数据库编程
1. ORM框架的基本原理
DAO模式无非就是手动将POJO拆分并拼装成SQL语句和将SQL查询结果拼装回POJO
在使用了JDBC高级技术和DAO模式进行编程后,仍然需要编写大量的SQL语句
而ORM通过xml配置文件或使用Java注解的方式把Java对象映射到数据库上
这样ORM(Object-Relative Database-Mapping)框架就能自动生成SQL语句
2. 使用ORM框架Hibernate进行数据库编程
Hibernete是ORM框架的一种,同样能够自动生成SQL语句
在DAO模式中,一个简单的Person POJO如下(省略getter和setter方法):
public class Person { private Integer id; private String name; }
对应于数据库的表person
create table if not exists person ( id int primary key auto_increment, name varchar(20) not null, );
使用Java注解后Person POJO实体类能映射到数据库上,并能自动生成SQL语句
代码如下(省略getter和setter方法):
@Entity @Table(name = "person") public class Person{ @Id @GeneratedValue(strategy= IDENTITY) private Integer id; @Column(name = "name") private String name; }
Hibernate使用Session和HQL语句进行数据库的相关操作,如查询数据的操作如下:
Session session =HibernateSessionFactory.getSessionFactory().openSession(); String queryString = "select p.id,p.name from Person p"; //查询并输出所有的记录 List<Object[]> personList =session.createQuery(queryString).list(); for(Object[] row : personList){ for(Object obj : row) System.out.print(" " + obj); System.out.println(); } session.close();
总结:ORM这类的框架解决了DAO层需要编写大量的SQL语句的问题
Hibernate使用HQL解决了数据库的移植问题
优点:无需再编写大量的SQL语句并解决了数据库移植问题
缺点:在数据库事务操作上然后要编写较多的代码
四、使用JPA规范进行数据库编程
1. 使用JPA规范
由于人们使用各种不同的数据库如Oracle、DB2、MySQL和SQL Server等进行数据存储
所以进行数据库连接的方式必然多种多样,而JDBC则规范了数据库的连接方式
同样的道理,各种ORM框架的出现必然会使开发和维护的难度升级
所以Java官方又推出了JPA规范,旨在规范各种ORM框架,使其有统一的接口和方法
使用JPA规范进行数据库编程只需指定一种ORM框架作为底层的实现,如Hibernate
如果需要更换其它的ORM框架则只需在配置文件中修改,类似于更换其它的数据库
而JPA规范则使用EntityManager进行相关的数据库操作,如查找操作如下:
public boolean findPersonByName(String name) { EntityManagerFactory emf = Persistence.createEntityManagerFactory("persistence-unitname"); EntityManager em = emf.createEntityManager(); Person person = em. findPersonByName(name); if (a == null) return false; return true; }
总结:JPA需要指定一种ORM框架作为底层的实现
JPA也是使用Java注解配置POJO,使用EntityManager进行相关的数据库操作
优点:JPA规范旨在规范各种ORM框架,使其有统一的接口和方法
缺点:仍然需要对事务管理进行编程
五、使用SpringDAO进行数据库编程
SpringDAO对JDBC进行了封装,结合DAO模式进行使用
SpringDAO规范使用JDBCTemplate进行相关的数据库操作,如查找操作如下:
public int getPersonCount(){ String sql = "select count(*) from person"; return getJdbcTemplate().queryForInt(sql); }
总结:SpringDAO对JDBC进行了封装,隐藏了JDBC API,只需使用getJdbcTemplate()方法
类似于使用DAO模式,只是封装了JDBC和提供了事务管理
优点:能够通过使用Spring进行事务管理
隐藏和封装了JDBCAPI
缺点: 类似于使用DAO模式,仍然需要编写和使用大量的SQL语句
六、使用SpringORM进行数据库编程
SpringORM就是为了解决SpringDAO的缺点,让其完善起来
这样一来,SpringORM就有了所有的优点,包括能够使用DAO模式进行分层
能够使用ORM框架解决编写大量的SQL语句的问题
隐藏和封装了JDBC API,只需使用getHibernateTemplate()方法
能够使用HQL解决数据库的移植问题,并且通过使用Spring进行事务管理
总结:使用SpringORM进行数据持久化编程是相对比较理想的
补充:使用SSH框架进行Java Web编程能够做到合理分层
能将业务逻辑、数据持久化和表现逻辑明确分开,思路清晰
表现逻辑层中的Struts2是MVC框架,能够进行页面导航和实现视图显示
在结构上表现为使用action进行页面导航,使用JSP作为视图界面
数据持久层中的Hibernate则是持久化ORM框架,能够自动生成SQL语句
在结构上表现为使用DAO和POJO(domain)实现数据持久化
业务逻辑层的Spring则能使用简单的封装好的JDBC进行CRUD和事务管理
在结构上表现为使用service进行业务管理

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

先週、社内の辞任と社外からの批判が相次ぐ中、OpenAIは内外のトラブルに見舞われた。 - 未亡人姉妹への侵害が世界中で白熱した議論を巻き起こした - 「覇権条項」に署名した従業員が次々と暴露 - ネットユーザーがウルトラマンの「」をリストアップ噂の払拭: Vox が入手した漏洩情報と文書によると、アルトマンを含む OpenAI の上級幹部はこれらの株式回収条項をよく認識しており、承認しました。さらに、OpenAI には、AI セキュリティという深刻かつ緊急の課題が直面しています。最近、最も著名な従業員2名を含むセキュリティ関連従業員5名が退職し、「Super Alignment」チームが解散したことで、OpenAIのセキュリティ問題が再び注目を集めている。フォーチュン誌は OpenA を報じた。

70B モデルでは、数秒で 1,000 個のトークンを生成でき、これはほぼ 4,000 文字に相当します。研究者らは Llama3 を微調整し、高速化アルゴリズムを導入しました。ネイティブ バージョンと比較して、速度は 13 倍高速になりました。速いだけでなく、コード書き換えタスクのパフォーマンスは GPT-4o をも上回ります。この成果は、人気の AI プログラミング成果物 Cursor を開発したチーム、anysphere によるもので、OpenAI も投資に参加しました。有名な高速推論アクセラレーション フレームワークである Groq では、70BLlama3 の推論速度は 1 秒あたり 300 トークンを超える程度であることを知っておく必要があります。 Cursor の速度により、ほぼ瞬時に完全なコード ファイル編集を実現すると言えます。カースと言うと良い奴だと言う人もいる

Llama3 はオープンソースの堂々たる王様ですが、オリジナルのコンテキスト ウィンドウはわずか... 8k で、「とても良い匂いがする」という言葉を飲み込みました。現在、32k が開始点であり、100k が一般的ですが、これはオープンソース コミュニティへの貢献の余地を残す意図があるのでしょうか?オープンソース コミュニティは確かにこの機会を逃しませんでした。わずか 58 行のコードで、Llama370b の微調整されたバージョンは自動的に 1048k (100 万) コンテキストに拡張できるようになりました。舞台裏には、適切なコンテキストを拡張する Llama370BInstruct の微調整バージョンから抽出された LoRA があり、ファイルはわずか 800 MB です。次に、Mergekit を使用すると、同じアーキテクチャの他のモデルで実行したり、モデルに直接マージしたりできます。 1048k コンテキストが使用される
