ホームページ データベース mysql チュートリアル 关于mongodb创建索引的一些经验总结

关于mongodb创建索引的一些经验总结

Jun 07, 2016 pm 03:58 PM
mongodb について 作成する 索引 体験談まとめ

想来接触mongodb已经快一年了,对于它的索引知识也积攒了不少经验,趁着这个月黑风高的夜晚,就把mongodb的索引总结一番吧。 一,索引介绍 mongodb具有两类索引,分别为单键索引和复合索引。 1.单键索引是最简单的一种索引,创建单键索引的开销要比复合索引

想来接触mongodb已经快一年了,对于它的索引知识也积攒了不少经验,趁着这个月黑风高的夜晚,就把mongodb的索引总结一番吧。

一,索引介绍


mongodb具有两类索引,分别为单键索引和复合索引。

1.单键索引是最简单的一种索引,创建单键索引的开销要比复合索引小很多。单键索引主要用于针对单值查询的条件。

2.复合索引是将文档中的几个键联合起来创建的一种索引,创建这种索引需要更多的空间与性能开销。分别体现在:

1).在给大量数据创建复合索引时,会阻塞数据库的查询,更不用说修改和插入操作了;

2).插入一条数据时,要花费更多的时间来给复合索引加数据;

3).创建的复合索引所站得空间大小根据数据的类型以及键的数量而有所不同。比如,如果你用五个NumberInt的键创建的复合索引的空间大小,并不会比两个NumberInt和一个String类型创建的复合索引占用更多的空间。索引在设计数据类型时,尽量将数据类型设置为NumberInt类型,以及尽量少使用string类型的数据做索引;

二,创建索引


创建索引的语句很简单。

1.单键索引的创建:db.test.ensureIndex({name:1},{name:'index_name'})

2.复合索引的创建:db.test.ensureIndex({name:1,age:1,sex:1},{name:'index_nas'})

三,索引优化


索引的优化是一个重头戏,需要详细的来解释。我得测试数据插入了100万条。字段分别为name,sex,type,time,id

1.我们来看一个简单的查询:db.test.find({name:'name_1'}) 相信大家对这个查询已经很熟悉了,然后我们来看看这个语句的索引执行计划:

{
	"cursor" : "BasicCursor",   查询语句所用到的索引,而BasicCursor代表没有索引
	"isMultiKey" : false,     是否为复合索引
	"n" : 1,       查询到的结果数
	"nscannedObjects" : 1000000,    扫描的文档数量
	"nscanned" : 1000000,     扫面的索引数量
	"nscannedObjectsAllPlans" : 1000000,   //影响的所有的被扫描文档的总数量
	"nscannedAllPlans" : 1000000,      //所有被扫描的索引的总数量
	"scanAndOrder" : false,  是否排序
	"indexOnly" : false,
	"nYields" : 2,
	"nChunkSkips" : 0,
	"millis" : 342,   花费的时间
	"indexBounds" : {
		
	},
	"server" : "node1:27017"
}
ログイン後にコピー

从这个执行计划中可以看出,该条查询语句查询一条数据需要扫描整个表,这肯定扯淡了嘛,那这时候就该给这个字段创建索引了,创建一个单键索引

db.test.ensureIndex({name:1},{name:'index_name'})

创建完索引之后,再来查看看这条查询语句的执行计划:

{
	"cursor" : "BtreeCursor index_name",
	"isMultiKey" : false,
	"n" : 1,
	"nscannedObjects" : 1,
	"nscanned" : 1,
	"nscannedObjectsAllPlans" : 1,
	"nscannedAllPlans" : 1,
	"scanAndOrder" : false,
	"indexOnly" : false,
	"nYields" : 0,
	"nChunkSkips" : 0,
	"millis" : 0,
	"indexBounds" : {
		"name" : [
			[
				"name_1",
				"name_1"
			]
		]
	},
	"server" : "node1:27017"
}
ログイン後にコピー

简直是逆天啊,nscanned和nscannedObjects居然从100万下降到1条,也就是查询数据时,只扫描了一条就已经找到,而且花费的时间是0秒,没有创建索引时,居然是342毫秒,绝对索引威武啊。

2.这时候我想通过type和sex来组合查询某一条件的数据: db.test.find({type:1,sex:0}) 看看这句的执行计划:

{
	"cursor" : "BasicCursor",
	"isMultiKey" : false,
	"n" : 55555,
	"nscannedObjects" : 1000000,
	"nscanned" : 1000000,
	"nscannedObjectsAllPlans" : 1000000,
	"nscannedAllPlans" : 1000000,
	"scanAndOrder" : false,
	"indexOnly" : false,
	"nYields" : 0,
	"nChunkSkips" : 0,
	"millis" : 529,
	"indexBounds" : {
		
	},
	"server" : "node1:27017"
}
ログイン後にコピー

从这个计划中可以看出,为了查找几万条数据,它也扫描了整个表,很显然,该创建索引了:

db.test.ensureIndex({type:1,sex:1},{name:'index_ts'})

创建完索引之后,再来执行查询语句,看看执行计划:

db.test.find({type:1,sex:0}).explain()
{
	"cursor" : "BtreeCursor index_ts",
	"isMultiKey" : false,
	"n" : 55555,
	"nscannedObjects" : 55555,
	"nscanned" : 55555,
	"nscannedObjectsAllPlans" : 55555,
	"nscannedAllPlans" : 55555,
	"scanAndOrder" : false,
	"indexOnly" : false,
	"nYields" : 0,
	"nChunkSkips" : 0,
	"millis" : 112,
	"indexBounds" : {
		"type" : [
			[
				1,
				1
			]
		],
		"sex" : [
			[
				0,
				0
			]
		]
	},
	"server" : "node1:27017"
}
ログイン後にコピー

很显然,绝对是一个最佳索引,因为n=nscannedObjects=nscanned了,而且查询时间从529毫秒下降到112毫秒了,这也是一个质的飞跃,可以明显的看到,它使用了刚刚创建的index_ts索引。

现在我又有一个需求了,我想通过时间再来排序,好的,我们执行查询语句: db.test.find({type:1,sex:0}).sort({time:-1}) 我们来看看这个查询语句的执行计划:

{
	"cursor" : "BtreeCursor index_ts",
	"isMultiKey" : false,
	"n" : 55555,
	"nscannedObjects" : 1000000,
	"nscanned" : 1000000,
	"nscannedObjectsAllPlans" : 1000000,
	"nscannedAllPlans" : 1000000,
	"scanAndOrder" : true,
	"indexOnly" : false,
	"nYields" : 1,
	"nChunkSkips" : 0,
	"millis" : 695,
	"indexBounds" : {
		"type" : [
			[
				1,
				1
			]
		],
		"sex" : [
			[
				0,
				0
			]
		]
	},
	"server" : "node1:27017"
}
ログイン後にコピー

看到没,这个查询语句跟上一个创建索引之后的查询出来的结果相差还是很大的,scanAndOrder和millis,时间花费了将近700毫秒,而且在查询完毕之后还要排序,这也太不近人情了,就加了一个排序操作,怎么会让它从白天鹅变成丑小鸭了呢?啊,关键参数就是scanAndOrder,意思就是在内存中把结果排序了嘛,那好啊,既然你如此薄情,那我就建个复合索引来对抗: db.test.ensureIndex({type:1,sex:1,time:-1},{name:'index_tst'})

{
	"cursor" : "BtreeCursor index_tst",
	"isMultiKey" : false,
	"n" : 55555,
	"nscannedObjects" : 55555,
	"nscanned" : 55555,
	"nscannedObjectsAllPlans" : 55555,
	"nscannedAllPlans" : 55555,
	"scanAndOrder" : false,
	"indexOnly" : false,
	"nYields" : 0,
	"nChunkSkips" : 0,
	"millis" : 126,
	"indexBounds" : {
		"type" : [
			[
				1,
				1
			]
		],
		"sex" : [
			[
				0,
				0
			]
		],
		"time" : [
			[
				{
					"$maxElement" : 1
				},
				{
					"$minElement" : 1
				}
			]
		]
	},
	"server" : "node1:27017"
}
ログイン後にコピー

看到了吗?各种参数又回到最佳状态了。这时候可能有人会问了,为什么要把time放到索引的最后而不是其它位置呢?其实这在创建索引时是有要求的,即:

  1. 将等值索引放在最前面

  2. 尽量将排序字段放在范围字段的前面

  3. $nin和$ne跟索引没有关系

    接下来我们再给查询语句加条件: db.test.find({type:1,sex:0,id:{$gt:1,$lt:500000}}) 执行计划如下:

    {
    	"cursor" : "BasicCursor",
    	"isMultiKey" : false,
    	"n" : 55555,
    	"nscannedObjects" : 1000000,
    	"nscanned" : 1000000,
    	"nscannedObjectsAllPlans" : 1000000,
    	"nscannedAllPlans" : 1000000,
    	"scanAndOrder" : false,
    	"indexOnly" : false,
    	"nYields" : 2,
    	"nChunkSkips" : 0,
    	"millis" : 553,
    	"indexBounds" : {
    		
    	},
    	"server" : "node1:27017"
    }
    ログイン後にコピー

    可以看到,只返回两万多条数据,但是却扫描了整个表,这肯定是很蛋疼的事情嘛,索引走起:

    db.test.ensureIndex({type:1,sex:1,id:1},{name:'index_tis'})

    {
    	"cursor" : "BtreeCursor index_tis",
    	"isMultiKey" : false,
    	"n" : 55555,
    	"nscannedObjects" : 55555,
    	"nscanned" : 55555,
    	"nscannedObjectsAllPlans" : 55555,
    	"nscannedAllPlans" : 55555,
    	"scanAndOrder" : false,
    	"indexOnly" : false,
    	"nYields" : 1,
    	"nChunkSkips" : 0,
    	"millis" : 137,
    	"indexBounds" : {
    		"type" : [
    			[
    				1,
    				1
    			]
    		],
    		"sex" : [
    			[
    				0,
    				0
    			]
    		],
    		"id" : [
    			[
    				1,
    				1000000
    			]
    		]
    	},
    	"server" : "node1:27017"
    }
    ログイン後にコピー

    很显然,这是个非常不错的组合索引,那为何不把id放在其它地方,偏偏放在最后面呢?因为在mongodb中,索引是从左到右执行的,因此显然要从左到右一次过滤最大数量的数据显然type和sex的组合过滤数据量要比id高更多,因为id的忙查率要远高于这两个组合。

    接着再把按time排序加上,查询:db.test.find({type:1,sex:1,id:{$gt:0,$lt:1000000}}).sort({time:-1}).explain()

    {
    	"cursor" : "BasicCursor",
    	"isMultiKey" : false,
    	"n" : 55556,
    	"nscannedObjects" : 1000000,
    	"nscanned" : 1000000,
    	"nscannedObjectsAllPlans" : 1000000,
    	"nscannedAllPlans" : 1000000,
    	"scanAndOrder" : true,
    	"indexOnly" : false,
    	"nYields" : 1,
    	"nChunkSkips" : 0,
    	"millis" : 725,
    	"indexBounds" : {
    		
    	},
    	"server" : "node1:27017"
    }
    ログイン後にコピー

    可以看到,这个查询语句也是极其慢的,而且还要再内存中排序,所以肯定要创建索引了:

    db.test.ensureIndex({type:1,sex:1,id:1,time:-1},{name:'index_tist'}) 我们先这样创建索引,看看执行计划:

    {
    	"cursor" : "BtreeCursor index_tist",
    	"isMultiKey" : false,
    	"n" : 55556,
    	"nscannedObjects" : 55556,
    	"nscanned" : 55556,
    	"nscannedObjectsAllPlans" : 55657,
    	"nscannedAllPlans" : 55657,
    	"scanAndOrder" : true,
    	"indexOnly" : false,
    	"nYields" : 0,
    	"nChunkSkips" : 0,
    	"millis" : 404,
    	"indexBounds" : {
    		"type" : [
    			[
    				1,
    				1
    			]
    		],
    		"sex" : [
    			[
    				1,
    				1
    			]
    		],
    		"id" : [
    			[
    				0,
    				1000000
    			]
    		],
    		"time" : [
    			[
    				{
    					"$maxElement" : 1
    				},
    				{
    					"$minElement" : 1
    				}
    			]
    		]
    	},
    	"server" : "node1:27017"
    }
    ログイン後にコピー

    看到了没有,虽然查询时间缩短了,但是这个查询结果还是会排序结果,好,我们再把索引改改:

    db.test.ensureIndex({type:1,sex:1,time:-1,id:1},{name:'index_tist'})

    {
    	"cursor" : "BtreeCursor index_tist",
    	"isMultiKey" : false,
    	"n" : 55556,
    	"nscannedObjects" : 55556,
    	"nscanned" : 55556,
    	"nscannedObjectsAllPlans" : 55657,
    	"nscannedAllPlans" : 55657,
    	"scanAndOrder" : false,
    	"indexOnly" : false,
    	"nYields" : 0,
    	"nChunkSkips" : 0,
    	"millis" : 168,
    	"indexBounds" : {
    		"type" : [
    			[
    				1,
    				1
    			]
    		],
    		"sex" : [
    			[
    				1,
    				1
    			]
    		],
    		"time" : [
    			[
    				{
    					"$maxElement" : 1
    				},
    				{
    					"$minElement" : 1
    				}
    			]
    		],
    		"id" : [
    			[
    				0,
    				1000000
    			]
    		]
    	},
    	"server" : "node1:27017"
    }
    ログイン後にコピー

    再来看看,快到什么程度了,这个查询的速度和参数条件已经比上一个索引的快了很多,那为什么会出现这种情况呢?为什么time在id的前后会有不同的表现?这是因为通过type和sex字段过滤完之后,已经在内存中有了数据,而这些数据下一步需要怎么办?是先通过id来筛选,还是按照排序筛选呢?这里有一个知识点,在把id放在time前面时,程序首先会取复合id值,然后再把复合的数据排序,但是如果id放在排序的后面,那么程序将直接通过顺序扫描索引树的方式取出复合id范围的数据。

    四,总结


    1.mongodb创建索引难点在于排序和范围查询的字段位置选择

    2.mongodb的复合索引的索引截取查询是顺序的,即如果(a:1,b:1,c:1},则可以是查询{a:1},{a:1,b:1},{a:1,b:1,c:1}中得任何一种都会使用该索引,其它查询情况将不会用到该索引;

    3.尽量创建更少的索引以提高数据库性能

    4.以上的索引优化只是生产环境的一部分,具体情况可能还要看自己的业务来定

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mongodb ではどのバージョンが一般的に使用されますか? mongodb ではどのバージョンが一般的に使用されますか? Apr 07, 2024 pm 05:48 PM

最新の機能と改善が提供される MongoDB の最新バージョン (現在 5.0) を使用することをお勧めします。バージョンを選択するときは、機能要件、互換性、安定性、コミュニティ サポートを考慮する必要があります。たとえば、最新バージョンにはトランザクションや集計パイプラインの最適化などの機能が備わっています。バージョンがアプリケーションと互換性があることを確認してください。運用環境の場合は、長期サポート バージョンを選択してください。最新バージョンでは、より積極的なコミュニティサポートが提供されています。

Nodejsとvuejsの違い Nodejsとvuejsの違い Apr 21, 2024 am 04:17 AM

Node.js はサーバー側の JavaScript ランタイムであり、Vue.js は対話型ユーザー インターフェイスを作成するためのクライアント側の JavaScript フレームワークです。 Node.js はバックエンド サービス API 開発やデータ処理などのサーバー側開発に使用され、Vue.js はシングルページ アプリケーションや応答性の高いユーザー インターフェイスなどのクライアント側開発に使用されます。

Realme Phoneでフォルダーを作成するにはどうすればよいですか? Realme Phoneでフォルダーを作成するにはどうすればよいですか? Mar 23, 2024 pm 02:30 PM

タイトル: Realme Phone 初心者ガイド: Realme Phone でフォルダーを作成する方法?今日の社会において、携帯電話は人々の生活に欠かせないツールとなっています。人気のスマートフォン ブランドとして、Realme Phone はそのシンプルで実用的なオペレーティング システムでユーザーに愛されています。 Realme 携帯電話を使用する過程で、多くの人が携帯電話上のファイルやアプリケーションを整理する必要がある状況に遭遇する可能性があり、フォルダーを作成するのが効果的な方法です。この記事では、ユーザーが携帯電話のコンテンツをより適切に管理できるように、Realme 携帯電話にフォルダーを作成する方法を紹介します。いいえ。

Gree+ でファミリーを作成する方法 Gree+ でファミリーを作成する方法 Mar 01, 2024 pm 12:40 PM

「Gree+ ソフトウェアでファミリーを作成する方法を知りたい」という友達がたくさんいました。操作方法は次のとおりです。詳しく知りたい友達は、一緒に見に来てください。まず、携帯電話で Gree+ ソフトウェアを開き、ログインします。次に、ページ下部のオプション バーで、右端の [My] オプションをクリックして、個人アカウント ページに入ります。 2. マイページにアクセスすると、「ファミリー」の下に「ファミリーを作成」という項目があるので、それをクリックして入力します。 3. 次にファミリーを作成するページにジャンプし、表示に従って入力ボックスに設定するファミリー名を入力し、入力後右上の「保存」ボタンをクリックします。 4. 最後に、ページの下部に「正常に保存しました」というプロンプトが表示され、ファミリが正常に作成されたことが示されます。

mongodb によって作成されたデータベースはどこにありますか? mongodb によって作成されたデータベースはどこにありますか? Apr 07, 2024 pm 05:39 PM

MongoDB データベースのデータは、ローカル ファイル システム、ネットワーク ファイル システム、またはクラウド ストレージに配置できる指定されたデータ ディレクトリに保存されます。具体的な場所は次のとおりです: ローカル ファイル システム: デフォルトのパスは Linux/macOS: /data/db、Windows: C:\data\db。ネットワーク ファイル システム: パスはファイル システムによって異なります。クラウド ストレージ: パスはクラウド ストレージ プロバイダーによって決定されます。

mongodbデータベースの利点は何ですか mongodbデータベースの利点は何ですか Apr 07, 2024 pm 05:21 PM

MongoDB データベースは、その柔軟性、スケーラビリティ、および高いパフォーマンスで知られています。その利点には、データを柔軟かつ非構造化された方法で保存できるドキュメント データ モデルが含まれます。シャーディングによる複数サーバーへの水平スケーラビリティ。クエリの柔軟性により、複雑なクエリと集計操作をサポートします。データ レプリケーションとフォールト トレランスにより、データの冗長性と高可用性が確保されます。 JSON サポートにより、フロントエンド アプリケーションと簡単に統合できます。大量のデータを処理する場合でも高速な応答を実現する高いパフォーマンス。オープンソースでカスタマイズ可能で無料で使用できます。

iPhone 用の連絡先ポスターを作成する方法 iPhone 用の連絡先ポスターを作成する方法 Mar 02, 2024 am 11:30 AM

iOS17 では、Apple は一般的に使用される電話アプリと連絡先アプリに連絡先ポスター機能を追加しました。この機能を使用すると、ユーザーは連絡先ごとにパーソナライズされたポスターを設定できるため、アドレス帳がより視覚的で個人的なものになります。連絡先ポスターは、ユーザーが特定の連絡先をより迅速に識別して見つけるのに役立ち、ユーザー エクスペリエンスを向上させます。この機能により、ユーザーは自分の好みやニーズに応じて各連絡先に特定の写真やロゴを追加でき、アドレス帳のインターフェイスがより鮮明になり、iOS17 では Apple は iPhone ユーザーに自分自身を表現する新しい方法を提供し、パーソナライズ可能な連絡先ポスターを追加しました。連絡先ポスター機能を使用すると、他の iPhone ユーザーに電話をかけるときに、独自のパーソナライズされたコンテンツを表示できます。あなた

mongodb とはどういう意味ですか? mongodb とはどういう意味ですか? Apr 07, 2024 pm 05:57 PM

MongoDB は、大量の構造化データと非構造化データを保存および管理するために使用されるドキュメント指向の分散データベース システムです。その中心的な概念にはドキュメントのストレージと配布が含まれ、その主な機能には動的スキーマ、インデックス作成、集約、マップリデュース、レプリケーションが含まれます。コンテンツ管理システム、電子商取引プラットフォーム、ソーシャル メディア Web サイト、IoT アプリケーション、モバイル アプリケーション開発で広く使用されています。

See all articles