ziplist和之前我解析过的adlist列表名字看上去的很像,但是作用却完全不同。之前的adlist主要针对的是普通的数据链表操作。而今天的ziplist指的是压缩链表,为什么叫压缩链表呢,因为链表中我们一般常用pre,next来指明当前的结点的前一个指针或当前的结点的
ziplist和之前我解析过的adlist列表名字看上去的很像,但是作用却完全不同。之前的adlist主要针对的是普通的数据链表操作。而今天的ziplist指的是压缩链表,为什么叫压缩链表呢,因为链表中我们一般常用pre,next来指明当前的结点的前一个指针或当前的结点的下一个指针,这其实是在一定程度上占据了比较多的内存空间,ziplist采用了长度的表示方法,整个ziplist其实是超级长的字符串,通过里面各个结点的长度,上一个结点的长度等信息,通过快速定位实现相关操作,而且编写者,在长度上也做了动态分配字节的方法,表示长度,避免了一定的内存耗费,比如一个结点的字符串长度每个都很短,而你使用好几个字节表示字符串的长度,显然造成大量浪费,所以在长度表示方面,ziplist 就做到了压缩,也体现了压缩的性能。ziplist 用在什么地方呢,ziplist 就是用在我们平常最常用的一个命令rpush,lpush等这些往链表添加数据的方法,这些数据就是存在ziplist 中的。之后我们会看到相应的实现方法。
在学习ziplist的开始,一定要理解他的结构,关于这一点,必须花一定时间想想,要不然不太容易明白人家的设计。下面是我的理解,帮助大家理解:
/* The ziplist is a specially encoded dually linked list that is designed * to be very memory efficient. It stores both strings and integer values, * where integers are encoded as actual integers instead of a series of * characters. It allows push and pop operations on either side of the list * in O(1) time. However, because every operation requires a reallocation of * the memory used by the ziplist, the actual complexity is related to the * amount of memory used by the ziplist. * * ziplist是一个编码后的列表,特殊的设计使得内存操作非常有效率,此列表可以同时存放 * 字符串和整数类型,列表可以在头尾各边支持推加和弹出操作在O(1)常量时间,但是,因为每次 * 操作设计到内存的重新分配释放,所以加大了操作的复杂性 * ---------------------------------------------------------------------------- * * ziplist的结构组成: * ZIPLIST OVERALL LAYOUT: * The general layout of the ziplist is as follows: * <zlbytes><zltail><zllen><entry><entry><zlend> * * <zlbytes> is an unsigned integer to hold the number of bytes that the * ziplist occupies. This value needs to be stored to be able to resize the * entire structure without the need to traverse it first. * <zipbytes>代表着ziplist占有的字节数,这方便当重新调整大小的时候不需要重新从头遍历 * * <zltail> is the offset to the last entry in the list. This allows a pop * operation on the far side of the list without the need for full traversal. * <zltail>记录了最后一个entry的位置在列表中,可以方便快速在列表末尾弹出操作 * * <zllen> is the number of entries.When this value is larger than 2**16-2, * we need to traverse the entire list to know how many items it holds. * <zllen>记录的是ziplist里面entry数据结点的总数 * * <zlend> is a single byte special value, equal to 255, which indicates the * end of the list. * <zlend>代表的是结束标识别,用单字节表示,值是255,就是11111111 * * ZIPLIST ENTRIES: * Every entry in the ziplist is prefixed by a header that contains two pieces * of information. First, the length of the previous entry is stored to be * able to traverse the list from back to front. Second, the encoding with an * optional string length of the entry itself is stored. * 每个entry数据结点主要包含2部分信息,第一个,上一个结点的长度,主要就可以可以从任意结点从后往前遍历整个列表 * 第二个,编码字符串的方式的类型保存 * * The length of the previous entry is encoded in the following way: * If this length is smaller than 254 bytes, it will only consume a single * byte that takes the length as value. When the length is greater than or * equal to 254, it will consume 5 bytes. The first byte is set to 254 to * indicate a larger value is following. The remaining 4 bytes take the * length of the previous entry as value. * 之前的数据结点的字符串长度的长度少于254个字节,他将消耗单个字节,一个字节8位,最大可表示长度为2的8次方 * 当字符串的长度大于254个字节,则用5个字节表示,第一个字节被设置成254,其余的4个字节占据的长度为之前的数据结点的长度 * * The other header field of the entry itself depends on the contents of the * entry. When the entry is a string, the first 2 bits of this header will hold * the type of encoding used to store the length of the string, followed by the * actual length of the string. When the entry is an integer the first 2 bits * are both set to 1. The following 2 bits are used to specify what kind of * integer will be stored after this header. An overview of the different * types and encodings is as follows: * 头部信息中的另一个值记录着编码的方式,当编码的是字符串,头部的前2位为00,01,10共3种 * 如果编码的是整型数字的时候,则头部的前2位为11,代表的是整数编码,后面2位代表什么类型整型值将会在头部后面被编码 * 00-int16_t, 01-int32_t, 10-int64_t, 11-24 bit signed,还有比较特殊的2个,11111110-8 bit signed, * 1111 0000 - 1111 1101,代表的是整型值0-12,头尾都已经存在,都不能使用,与传统的通过固定的指针表示长度,这么做的好处实现 * 可以更合理的分配内存 * * String字符串编码的3种形式 * |00pppppp| - 1 byte * String value with length less than or equal to 63 bytes (6 bits). * |01pppppp|qqqqqqqq| - 2 bytes * String value with length less than or equal to 16383 bytes (14 bits). * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes * String value with length greater than or equal to 16384 bytes. * |11000000| - 1 byte * Integer encoded as int16_t (2 bytes). * |11010000| - 1 byte * Integer encoded as int32_t (4 bytes). * |11100000| - 1 byte * Integer encoded as int64_t (8 bytes). * |11110000| - 1 byte * Integer encoded as 24 bit signed (3 bytes). * |11111110| - 1 byte * Integer encoded as 8 bit signed (1 byte). * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer. * Unsigned integer from 0 to 12. The encoded value is actually from * 1 to 13 because 0000 and 1111 can not be used, so 1 should be * subtracted from the encoded 4 bit value to obtain the right value. * |11111111| - End of ziplist. * * All the integers are represented in little endian byte order. * * ----------------------------------------------------------------------------
/* 实际存放数据的数据结点 */ typedef struct zlentry { //prevrawlen为上一个数据结点的长度,prevrawlensize为记录该长度数值所需要的字节数 unsigned int prevrawlensize, prevrawlen; //len为当前数据结点的长度,lensize表示表示当前长度表示所需的字节数 unsigned int lensize, len; //数据结点的头部信息长度的字节数 unsigned int headersize; //编码的方式 unsigned char encoding; //数据结点的数据(已包含头部等信息),以字符串形式保存 unsigned char *p; } zlentry; /* <zlentry>的结构图线表示 <pre_node_len>(上一结点的长度信息)<node_encode>(本结点的编码方式和编码数据的长度信息)<node>(本结点的编码数据) */
/* Insert item at "p". */ /* 插入操作的实现 */ static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) { size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen; unsigned int prevlensize, prevlen = 0; size_t offset; int nextdiff = 0; unsigned char encoding = 0; long long value = 123456789; /* initialized to avoid warning. Using a value that is easy to see if for some reason we use it uninitialized. */ zlentry tail; /* Find out prevlen for the entry that is inserted. */ //寻找插入的位置 if (p[0] != ZIP_END) { //定位到指定位置 ZIP_DECODE_PREVLEN(p, prevlensize, prevlen); } else { //如果插入的位置是尾结点,直接定位到尾结点,看第一个字节的就可以判断 unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl); if (ptail[0] != ZIP_END) { prevlen = zipRawEntryLength(ptail); } } /* See if the entry can be encoded */ if (zipTryEncoding(s,slen,&value,&encoding)) { /* 'encoding' is set to the appropriate integer encoding */ reqlen = zipIntSize(encoding); } else { /* 'encoding' is untouched, however zipEncodeLength will use the * string length to figure out how to encode it. */ reqlen = slen; } /* We need space for both the length of the previous entry and * the length of the payload. */ reqlen += zipPrevEncodeLength(NULL,prevlen); reqlen += zipEncodeLength(NULL,encoding,slen); /* When the insert position is not equal to the tail, we need to * make sure that the next entry can hold this entry's length in * its prevlen field. */ nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0; /* Store offset because a realloc may change the address of zl. */ //调整大小,为新结点的插入预留空间 offset = p-zl; zl = ziplistResize(zl,curlen+reqlen+nextdiff); p = zl+offset; /* Apply memory move when necessary and update tail offset. */ if (p[0] != ZIP_END) { /* Subtract one because of the ZIP_END bytes */ //如果插入的位置不是尾结点,则挪动位置 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff); /* Encode this entry's raw length in the next entry. */ zipPrevEncodeLength(p+reqlen,reqlen); /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen); /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ tail = zipEntry(p+reqlen); if (p[reqlen+tail.headersize+tail.len] != ZIP_END) { ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff); } } else { //如果是尾结点,直接设置新尾结点 /* This element will be the new tail. */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl); } /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) { offset = p-zl; zl = __ziplistCascadeUpdate(zl,p+reqlen); p = zl+offset; } /* Write the entry */ //写入新的数据结点信息 p += zipPrevEncodeLength(p,prevlen); p += zipEncodeLength(p,encoding,slen); if (ZIP_IS_STR(encoding)) { memcpy(p,s,slen); } else { zipSaveInteger(p,value,encoding); } //更新列表的长度加1 ZIPLIST_INCR_LENGTH(zl,1); return zl; }
/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */ /* 删除方法涉及p指针的滑动,后面的地址内容都需要滑动 */ static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) { unsigned int i, totlen, deleted = 0; size_t offset; int nextdiff = 0; zlentry first, tail; first = zipEntry(p); for (i = 0; p[0] != ZIP_END && i < num; i++) { p += zipRawEntryLength(p); deleted++; } totlen = p-first.p; if (totlen > 0) { if (p[0] != ZIP_END) { /* Storing `prevrawlen` in this entry may increase or decrease the * number of bytes required compare to the current `prevrawlen`. * There always is room to store this, because it was previously * stored by an entry that is now being deleted. */ nextdiff = zipPrevLenByteDiff(p,first.prevrawlen); p -= nextdiff; zipPrevEncodeLength(p,first.prevrawlen); /* Update offset for tail */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen); /* When the tail contains more than one entry, we need to take * "nextdiff" in account as well. Otherwise, a change in the * size of prevlen doesn't have an effect on the *tail* offset. */ tail = zipEntry(p); if (p[tail.headersize+tail.len] != ZIP_END) { ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff); } /* Move tail to the front of the ziplist */ memmove(first.p,p, intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1); } else { /* The entire tail was deleted. No need to move memory. */ ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe((first.p-zl)-first.prevrawlen); } /* Resize and update length */ //调整列表大小 offset = first.p-zl; zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff); ZIPLIST_INCR_LENGTH(zl,-deleted); p = zl+offset; /* When nextdiff != 0, the raw length of the next entry has changed, so * we need to cascade the update throughout the ziplist */ if (nextdiff != 0) zl = __ziplistCascadeUpdate(zl,p); } return zl; }
下面我们看看我们在redis命令行中输入的lpush或rpush调用的是什么方法呢?调用的形式:
zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL); zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
/* 在列表2边插入数据的方法 */ unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) { unsigned char *p; //这里开始直接定位 p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl); //组后调用插入数据的insert方法 return __ziplistInsert(zl,p,s,slen); }
/* zip列表的末尾值 */ #define ZIP_END 255 /* zip列表的最大长度 */ #define ZIP_BIGLEN 254 /* Different encoding/length possibilities */ /* 不同的编码 */ #define ZIP_STR_MASK 0xc0 #define ZIP_INT_MASK 0x30 #define ZIP_STR_06B (0 << 6) #define ZIP_STR_14B (1 << 6) #define ZIP_STR_32B (2 << 6) #define ZIP_INT_16B (0xc0 | 0<<4) #define ZIP_INT_32B (0xc0 | 1<<4) #define ZIP_INT_64B (0xc0 | 2<<4) #define ZIP_INT_24B (0xc0 | 3<<4) #define ZIP_INT_8B 0xfe /* 4 bit integer immediate encoding */ #define ZIP_INT_IMM_MASK 0x0f //后续的好多运算都需要与掩码进行位运算 #define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */ #define ZIP_INT_IMM_MAX 0xfd /* 11111101 */ //最大值不能为11111111,这跟最末尾的结点重复了 #define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK) #define INT24_MAX 0x7fffff #define INT24_MIN (-INT24_MAX - 1) /* Macro to determine type */ #define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK) /* Utility macros */ /* 下面是一些用来到时能够直接定位的数值偏移量 */ #define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl))) #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t)))) #define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2))) #define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t)) #define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE) #define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) #define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
/* * Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com> * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* 标记列表头节点和尾结点的标识 */ #define ZIPLIST_HEAD 0 #define ZIPLIST_TAIL 1 unsigned char *ziplistNew(void); //创建新列表 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where); //像列表中推入数据 unsigned char *ziplistIndex(unsigned char *zl, int index); //索引定位到列表的某个位置 unsigned char *ziplistNext(unsigned char *zl, unsigned char *p); //获取当前列表位置的下一个值 unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p); //获取当期列表位置的前一个值 unsigned int ziplistGet(unsigned char *p, unsigned char **sval, unsigned int *slen, long long *lval); //获取列表的信息 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen); //向列表中插入数据 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p); //列表中删除某个结点 unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num); //从index索引对应的结点开始算起,删除num个结点 unsigned int ziplistCompare(unsigned char *p, unsigned char *s, unsigned int slen); //列表间的比较方法 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip); //在列表中寻找某个结点 unsigned int ziplistLen(unsigned char *zl); //返回列表的长度 size_t ziplistBlobLen(unsigned char *zl); //返回列表的二进制长度,返回的是字节数