MongoDB 查询超时异常 SocketTimeoutException
MongoDB 查询超时异常 SocketTimeoutException
在对超过百万条记录的集合进行聚合操作。
DBObject match=(DBObject)JSON.parse("{$match:{logType:{'$in':[5,9]}}}");
DBObject group=(DBObject)JSON.parse("{$group:{'_id':'$domainUrl','count':{'$sum':1}}}");
AggregationOutput output = logCollection.aggregate(match,group);
偶尔会发生Read timed out 异常。
com.mongodb.MongoException$Network: Read operation to server /192.168.10.202:27017 failed on database adLogTable
at com.mongodb.DBTCPConnector.innerCall(DBTCPConnector.java:253)
at com.mongodb.DB.command(DB.java:261)
at com.mongodb.DB.command(DB.java:243) ...
Caused by: java.net.SocketTimeoutException: Read timed out
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java:152)
通过多次测试,发现执行一次聚合平均时间为5s,超过5s时就会报错!
然后查看MongoDB的配置信息:
socket-timeout="5000" //5s
socket-timeout的默认配置为0,也就是没有限制。
没有超时限制,,系统出了问题也不容易发现,应该根据实际情况,给出合理的超时时间。
通过多次测试发现最长执行时间为6秒,就把超时时间设置成了10000。
socket-timeout="10000" //10s
注意:MongoDB在与Spring整合时,如果要配置多个MongDB源,只会启用最后一个
应该把参数配置信息存储在properties文件中。
connect-timeout="1000"
max-wait-time="1000"
auto-connect-retry="true"
socket-keep-alive="true"
socket-timeout="10000"
slave-ok="true"
write-number="1"
write-timeout="0"
write-fsync="true" />
通过Java API获取配置参数
DBCollection logCollection = mongoTemplate.getCollection(collName);
MongoOptions mongoOptions = logCollection.getDB().getMongo().getMongoOptions();
System.out.println(mongoOptions.getSocketTimeout());
最后一点: ConnectionTimeOut和SocketTimeOut的区别:
一次完整的请求包括三个阶段:1、建立连接 2、数据传输 3、断开连接
如果与服务器(这里指数据库)请求建立连接的时间超过ConnectionTimeOut,就会抛 ConnectionTimeOutException,即服务器连接超时,没有在规定的时间内建立连接。
如果与服务器连接成功,就开始数据传输了。
如果服务器处理数据用时过长,超过了SocketTimeOut,就会抛出SocketTimeOutExceptin,即服务器响应超时,服务器没有在规定的时间内返回给客户端数据。
CentOS 编译安装 MongoDB与mongoDB的php扩展
CentOS 6 使用 yum 安装MongoDB及服务器端配置
Ubuntu 13.04下安装MongoDB2.4.3
MongoDB入门必读(概念与实战并重)
Ubunu 14.04下MongoDB的安装指南
《MongoDB 权威指南》(MongoDB: The Definitive Guide)英文文字版[PDF]
Nagios监控MongoDB分片集群服务实战
基于CentOS 6.5操作系统搭建MongoDB服务
MongoDB 的详细介绍:请点这里
MongoDB 的下载地址:请点这里
本文永久更新链接地址:

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









完全なテーブルスキャンは、MySQLでインデックスを使用するよりも速い場合があります。特定のケースには以下が含まれます。1)データボリュームは小さい。 2)クエリが大量のデータを返すとき。 3)インデックス列が高度に選択的でない場合。 4)複雑なクエリの場合。クエリプランを分析し、インデックスを最適化し、オーバーインデックスを回避し、テーブルを定期的にメンテナンスすることにより、実際のアプリケーションで最良の選択をすることができます。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

はい、MySQLはWindows 7にインストールできます。MicrosoftはWindows 7のサポートを停止しましたが、MySQLは引き続き互換性があります。ただし、インストールプロセス中に次のポイントに注意する必要があります。WindowsのMySQLインストーラーをダウンロードしてください。 MySQL(コミュニティまたはエンタープライズ)の適切なバージョンを選択します。インストールプロセス中に適切なインストールディレクトリと文字セットを選択します。ルートユーザーパスワードを設定し、適切に保ちます。テストのためにデータベースに接続します。 Windows 7の互換性とセキュリティの問題に注意してください。サポートされているオペレーティングシステムにアップグレードすることをお勧めします。

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

クラスター化されたインデックスと非クラスター化されたインデックスの違いは次のとおりです。1。クラスター化されたインデックスは、インデックス構造にデータを保存します。これは、プライマリキーと範囲でクエリするのに適しています。 2.非クラスター化されたインデックスストアは、インデックスキー値とデータの行へのポインターであり、非プリマリーキー列クエリに適しています。

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQLとMariaDBは共存できますが、注意して構成する必要があります。重要なのは、さまざまなポート番号とデータディレクトリを各データベースに割り当て、メモリ割り当てやキャッシュサイズなどのパラメーターを調整することです。接続プーリング、アプリケーションの構成、およびバージョンの違いも考慮する必要があり、落とし穴を避けるために慎重にテストして計画する必要があります。 2つのデータベースを同時に実行すると、リソースが制限されている状況でパフォーマンスの問題を引き起こす可能性があります。

MySQLは、Bツリー、ハッシュ、フルテキスト、および空間の4つのインデックスタイプをサポートしています。 1.B-Treeインデックスは、等しい値検索、範囲クエリ、ソートに適しています。 2。ハッシュインデックスは、等しい値検索に適していますが、範囲のクエリとソートをサポートしていません。 3.フルテキストインデックスは、フルテキスト検索に使用され、大量のテキストデータの処理に適しています。 4.空間インデックスは、地理空間データクエリに使用され、GISアプリケーションに適しています。
