MySQL QueryCache原理经典讲解

Jun 07, 2016 pm 04:09 PM
mysql 原理 大きい 私たち クラシック 説明する

我们大家都知道MySQLQueryCache(下面简称QC)它是根据实际应用的SQL语句来cache 的。一个相关的SQL查询,如果它是以select开头的话,其MySQL服务器就会尝试对其使用 QC。每个Cache都是以SQL文本作为key来存的。 在应用QC之前,SQL文本不会被作任何处理。 也就

我们大家都知道MySQL QueryCache(下面简称QC)它是根据实际应用的SQL语句来cache 的。一个相关的SQL查询,如果它是以select开头的话,其MySQL服务器就会尝试对其使用 QC。每个Cache都是以SQL文本作为key来存的。

在应用QC之前,SQL文本不会被作任何处理。

也就是说,两个SQL语句,只要相差哪怕是一个字 符(例如大小写不一样;多一个空格等),那么这两个SQL将使用不同的一个CACHE。不过SQL文本有可能会被客户端做一些处理。例如在官方的命令行客 户端里,在发送SQL给服务器之前,会做如下处理:

1、过滤所有注释。

2、去掉SQL文本前后的空格,TAB等字符。注意,是文本前面和后面的。中间的不会被去掉。

下面的三条SQL里,因为SELECT大小写的关系,最后一条和其他两条在QC里肯定是用的不一样的存储位置。而第一条和第二条,区别在于后者有个 注释,在不同客户端,会有不一样的结果。所以,保险起见,请尽量不要使用动态的注释。在PHP的mysql扩展里,SQL的注释是不会被去掉的。也就是三 条SQL会被存储在三个不同的缓存里,虽然它们的结果都是一样的。

<ol class="dp-xml">
<li class="alt"><span><span>select * FROM people where </span><span class="attribute">name</span><span>=’surfchen’;  </span></span></li>
<li>
<span>select * FROM people where /*hey~*/</span><span class="attribute">name</span><span>=’surfchen’;  </span>
</li>
<li class="alt">
<span>SELECT * FROM people where </span><span class="attribute">name</span><span>=’surfchen’; </span>
</li>
</ol>
ログイン後にコピー

目前只有select语句会被cache,其他类似show,use的语句则不会被cache。

因为QC是如此前端,如此简单的一个缓存系统,所以如果一个表被更新,那么和这个表相关的SQL的所有QC都会被失效。假设一个联合查询里涉及到了表A和表B,如果表A或者表B的其中一个被更新(update或者delete),这个查询的QC将会失效。

也就是说,如果一个表被频繁更新,那么就要考虑清楚究竟是否应该对相关的一些SQL进行QC了。一个被频繁更新的表如果被应用了QC,可能会加重数 据库的负担,而不是减轻负担。一般的做法是默认打开QC,而对一些涉及频繁更新的表的SQL语句加上SQL_NO_CACHE关键词来对其禁用 CACHE。这样可以尽可能避免不必要的内存操作,尽可能保持内存的连续性。

那些查询很分散的SQL语句,也不应该使用QC。例如用来查询用户和密码的语句——“select pass from user where name=’surfchen’”。这样的语句,在一个系统里,很有可能只在一个用户登陆的时候被使用。每个用户的登陆所用到的查询,都是不一样的SQL 文本,QC在这里就几乎不起作用了,因为缓存的数据几乎是不会被用到的,它们只会在内存里占地方。

存储块

在本节里“存储块”和“block”是同一个意思。QC缓存一个查询结果的时候,一般情况下不是一次性地分配足够多的内存来缓存结果的。而是在查询 结果获得的过程中,逐块存储。当一个存储块被填满之后,一个新的存储块将会被创建,并分配内存(allocate)。

单个存储块的内存分配大小通过 query_cache_min_res_unit参数控制,默认为4KB。最后一个存储块,如果不能被全部利用,那么没使用的内存将会被释放。如果被缓 存的结果很大,那么会可能会导致分配内存操作太频繁,系统系能也随之下降;而如果被缓存的结果都很小,那么可能会导致内存碎片过多,这些碎片如果太小,就 很有可能不能再被分配使用。

除了查询结果需要存储块之外,每个SQL文本也需要一个存储块,而涉及到的表也需要一个存储块(表的存储块是所有线程共享的,每个表只需要一个存储 块)。存储块总数量=查询结果数量*2+涉及的数据库表数量。

也就是说,第一个缓存生成的时候,至少需要三个存储块:表信息存储块,SQL文本存储块,查 询结果存储块。而第二个查询如果用的是同一个表,那么最少只需要两个存储块:SQL文本存储块,查询结果存储块。

通过观察Qcache_queries_in_cache和Qcache_total_blocks可以知道平均每个缓存结果占用的存储块。它们的 比例如果接近1:2,则说明当前的query_cache_min_res_unit参数已经足够大了。如果Qcache_total_blocks比 Qcache_queries_in_cache多很多,则需要增加query_cache_min_res_unit的大小。

Qcache_queries_in_cache*query_cache_min_res_unit(sql文本和表信息所在的block占用的 内存很小,可以忽略)如果远远大于query_cache_size-Qcache_free_memory,那么可以尝试减小 query_cache_min_res_unit的值。

关于MySQL QueryCache原理 :调整大小

如果Qcache_lowmem_prunes增长迅速,意味着很多缓存因为内存不够而被释放,而不是因为相关表被更新。尝试加大query_cache_size,尽量使Qcache_lowmem_prunes零增长。

启动参数

show variables like ‘query_cache%’可以看到这些信息。

query_cache_limit:如果单个查询结果大于这个值,则不Cache

query_cache_size:分配给QC的内存。如果设为0,则相当于禁用QC。要注意QC必须使用大约40KB来存储它的结构,如果设定小于 40K


このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

rootとしてmysqlにログインできません rootとしてmysqlにログインできません Apr 08, 2025 pm 04:54 PM

ルートとしてMySQLにログインできない主な理由は、許可の問題、構成ファイルエラー、一貫性のないパスワード、ソケットファイルの問題、またはファイアウォール傍受です。解決策には、構成ファイルのBind-Addressパラメーターが正しく構成されているかどうかを確認します。ルートユーザー許可が変更されているか削除されてリセットされているかを確認します。ケースや特殊文字を含むパスワードが正確であることを確認します。ソケットファイルの許可設定とパスを確認します。ファイアウォールがMySQLサーバーへの接続をブロックすることを確認します。

MySQLテーブルロックテーブルを変更するかどうか MySQLテーブルロックテーブルを変更するかどうか Apr 08, 2025 pm 05:06 PM

MySQLがテーブル構造を変更すると、メタデータロックが通常使用され、テーブルがロックされる可能性があります。ロックの影響を減らすために、次の測定値をとることができます。1。オンラインDDLでテーブルを使用できます。 2。バッチで複雑な変更を実行します。 3.小規模またはオフピーク期間中に操作します。 4. PT-OSCツールを使用して、より細かい制御を実現します。

MySQLユーザーとデータベースの関係 MySQLユーザーとデータベースの関係 Apr 08, 2025 pm 07:15 PM

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQLのクエリ最適化は、特に大規模なデータセットを扱う場合、データベースのパフォーマンスを改善するために不可欠です MySQLのクエリ最適化は、特に大規模なデータセットを扱う場合、データベースのパフォーマンスを改善するために不可欠です Apr 08, 2025 pm 07:12 PM

1.正しいインデックスを使用して、データの量を削減してデータ検索をスピードアップしました。テーブルの列を複数回検索する場合は、その列のインデックスを作成します。あなたまたはあなたのアプリが基準に従って複数の列からのデータが必要な場合、複合インデックス2を作成します2。選択した列のみを避けます。必要な列のすべてを選択すると、より多くのサーバーメモリを使用する場合にのみサーバーが遅くなり、たとえばテーブルにはcreated_atやupdated_atやupdated_atなどの列が含まれます。

MySQLはAndroidで実行できますか MySQLはAndroidで実行できますか Apr 08, 2025 pm 05:03 PM

MySQLはAndroidで直接実行できませんが、次の方法を使用して間接的に実装できます。Androidシステムに構築されたLightWeight Database SQLiteを使用して、別のサーバーを必要とせず、モバイルデバイスアプリケーションに非常に適したリソース使用量が少ない。 MySQLサーバーにリモートで接続し、データの読み取りと書き込みのためにネットワークを介してリモートサーバー上のMySQLデータベースに接続しますが、強力なネットワーク依存関係、セキュリティの問題、サーバーコストなどの短所があります。

mysqlは支払う必要がありますか mysqlは支払う必要がありますか Apr 08, 2025 pm 05:36 PM

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

RDS MySQL Redshift Zero ETLとの統合 RDS MySQL Redshift Zero ETLとの統合 Apr 08, 2025 pm 07:06 PM

データ統合の簡素化:AmazonrdsmysqlとRedshiftのゼロETL統合効率的なデータ統合は、データ駆動型組織の中心にあります。従来のETL(抽出、変換、負荷)プロセスは、特にデータベース(AmazonrdsmysQlなど)をデータウェアハウス(Redshiftなど)と統合する場合、複雑で時間がかかります。ただし、AWSは、この状況を完全に変えたゼロETL統合ソリューションを提供し、RDSMYSQLからRedshiftへのデータ移行のための簡略化されたほぼリアルタイムソリューションを提供します。この記事では、RDSMysQl Zero ETLのRedshiftとの統合に飛び込み、それがどのように機能するか、それがデータエンジニアと開発者にもたらす利点を説明します。

高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? 高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? Apr 08, 2025 pm 06:03 PM

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

See all articles