T-SQL基础教程:集合理论
集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下: 集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。 ──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版
集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下:
集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。
──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版社,1990年)
定义中的每个字都有着深刻和重要意义。集合定义和集合从属关系是无需证明的公理,宇宙中的每个元素要么是集合成员,要么不是集合成员。
让我们从Cantor定义中的每个词开始。一个“集合”应将其视为单个实体,你的焦点应该放在对象的集合上,而不是组成集合的单个对象上。然后,当你对数据库中的表(如雇员表)编写T-SQL查询时,你应该将雇员的集合看作是一个整体,而不是单个的雇员。这听起来可能并不重要并且很简单,但显然很多程序员很难采用这种思维方式。
“互异”这个词的含义是指集合中的每个元素必须是唯一的。跳跃到数据库中的表,你可以通过定义键约束来强制表中行的唯一性。没有键的话,你就不能唯一地标识行,因此表也就不能取得“集合”资格。相反,该表将是一个多重集合或是一个无序的单位组。
“我们感知或想到的”这句话意味着集合的定义是主观的。思考一下教室:一个人可以被认为是“人”的集合,也有可能被认为是“学生”或“教师”的集合。因此,在定义集合方面你具有很大的自由度。当你为数据库设计数据模型时,设计过程应仔细考虑应用程序的主观需求,从而为相关实体确定恰当的定义。
至于“对象”,,集合的定义不是限制为像汽车或雇员这样的物理对象,而是相关的抽象对象,如质数或线条。
Cantor的集合定义省略掉的内容很可能像所包含的内容一样重要。请注意,定义中没有提到集合元素间的任何顺序,集合元素的列出顺序并不重要。列出集合元素的正式标记符号是使用大括号:{a、b、c}。因为与顺序无关,你可以使用{b, a, c}或{b, c, a}表示同一集合。跳跃到属性(SQL中称之为列)集合,它们组成了关系(SQL中称之为表)的表头,元素应该是按名称标识──而不是按顺序位置标识。
同样,思考一下元组(SQL中称之为行)的设置,它们构成了关系的主体,元素由其键值进行标识,而不是按位置标识。许多程序员很难适应这种观念,对于查询表而言,行之间没有顺序。换句话说,对表的查询可以按任意顺序返回表中的行,除非你基于特定展现目的,明确要求数据以特定方式的进行排序。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









現代の製造において、正確な欠陥検出は製品の品質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

夏の雨の後には、美しく魔法のような特別な天気の風景、虹がよく見られます。これも写真撮影ではなかなか出会えない光景で、とてもフォトジェニックです。虹が現れるにはいくつかの条件があります。まず、空気中に十分な水滴があること、そして、低い角度から太陽が当たることです。そのため、雨が上がった午後が最も虹が見えやすいのです。ただし、虹の発生は天候や光などの条件に大きく左右されるため、一般に虹の持続時間は短く、見頃や撮影に最適な時間はさらに短くなります。では、虹に遭遇したとき、どうすれば虹を適切に記録し、高品質の写真を撮ることができるでしょうか? 1. 虹を探す 上記の条件に加えて、虹は通常、太陽光の方向に現れます。つまり、太陽が西から東に輝いている場合、虹は東に現れやすくなります。

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

編集者 | ScienceAI 限られた臨床データに基づいて、何百もの医療アルゴリズムが承認されています。科学者たちは、誰がツールをテストすべきか、そしてどのようにテストするのが最善かについて議論しています。デビン シン氏は、救急治療室で小児患者が治療を長時間待っている間に心停止に陥るのを目撃し、待ち時間を短縮するための AI の応用を模索するようになりました。 SickKids 緊急治療室からのトリアージ データを使用して、Singh 氏らは潜在的な診断を提供し、検査を推奨する一連の AI モデルを構築しました。ある研究では、これらのモデルにより医師の診察が 22.3% 短縮され、医療検査が必要な患者 1 人あたりの結果の処理が 3 時間近く高速化できることが示されました。ただし、研究における人工知能アルゴリズムの成功は、これを証明するだけです。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

2023 年には、AI のほぼすべての分野が前例のない速度で進化しています。同時に、AI は身体化されたインテリジェンスや自動運転などの主要な分野の技術的限界を押し広げています。マルチモーダルの流れのもと、AI大型モデルの主流アーキテクチャとしてのTransformerの状況は揺るがされるだろうか? MoE (専門家混合) アーキテクチャに基づく大規模モデルの検討が業界の新しいトレンドになっているのはなぜですか?ラージ ビジョン モデル (LVM) は、一般的な視覚における新たなブレークスルーとなる可能性がありますか? ...過去 6 か月間にリリースされたこのサイトの 2023 PRO メンバー ニュースレターから、上記の分野の技術トレンドと業界の変化を詳細に分析し、新しい分野での目標を達成するのに役立つ 10 の特別な解釈を選択しました。準備してください。この解釈は 2023 年の Week50 からのものです
