聊聊大数据环境下的数据库架构
随着数据的快速增长,分表,分库,memcache,redis,mongodb,hadoop,bigtable等,各种解决方案呼之欲出。经过测试,在MySQL中,无论如何加索引,数据超过百w时,查询起来耗时很明显。 因此mysql分表分库+memcache+redis也不失是一个完美解决方案。 由于redis不
随着数据的快速增长,分表,分库,memcache,redis,mongodb,hadoop,bigtable等,各种解决方案呼之欲出。经过测试,在MySQL中,无论如何加索引,数据超过百w时,查询起来耗时很明显。
因此mysql分表分库+memcache+redis也不失是一个完美解决方案。
由于redis不支持复杂查询,redis的读取性能还是赶不上mem这些劣势,因此才需要一些搭挡。
流程
从CRUD看底层架构。
1. 插入数据
一般情况下,对用户是没有必要分表的,用户的文章或者微博才分表,毕竟用户表和微博表是无法比拟,不一个等级的。
插入时,任何表,mysql只存储索引字段,其它数据存储在redis上。文章表可按一定规则进行静态分表,比如按用户id分100张表,每个用户发的文章都会路由到同一张表中。
数据总数需要一个单独的字段存储在redis中,每个用户都有一个key进行存储文章总数。有时总数数据会与实际总条数有所不同,因此需要定期执行mysql count进行更新redis中的总数。
下面是分表路由,把uid对100取余:
protected function getTableName($name, $id=null) { $tableName = self::SYS_DB_PREFIX . $name; if (is_numeric($id) && $id > 0) return $tableName . '_' . ($id % $this->tableNum); }
2. 查询数据
每第一次数据查询时,根据MySQL中的索引从redis查询,需要将查询结果存储在memcache中,下次查询直接从memcache获取。查询某人文章时,直接从一张表中进行limit查询。
关于动态页面查询,比如登录后的豆瓣首页,会有一些动态好友的更新信息。这些信息是存储在一张临时表中的,只保存10天的更新。
3. 删除数据
整个系统无任何实际操作,只进行字段状态修改。
4. 修改数据
修改数据时,需要更新对应的memcache。
分库
当系统应用更加复杂时,一台数据库服务器的压力是很大的,可根据系统的业务流进行分库,比如文章一个独立库,评论一个独立库等。
更复杂的搜索
比如招聘网站中的,按地点,按行业,按规模等更多条件查询时,就需要一定的搜索系统来完成,这里不做更多搜索细节讨论。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











先週、社内の辞任と社外からの批判が相次ぐ中、OpenAIは内外のトラブルに見舞われた。 - 未亡人姉妹への侵害が世界中で白熱した議論を巻き起こした - 「覇権条項」に署名した従業員が次々と暴露 - ネットユーザーがウルトラマンの「」をリストアップ噂の払拭: Vox が入手した漏洩情報と文書によると、アルトマンを含む OpenAI の上級幹部はこれらの株式回収条項をよく認識しており、承認しました。さらに、OpenAI には、AI セキュリティという深刻かつ緊急の課題が直面しています。最近、最も著名な従業員2名を含むセキュリティ関連従業員5名が退職し、「Super Alignment」チームが解散したことで、OpenAIのセキュリティ問題が再び注目を集めている。フォーチュン誌は OpenA を報じた。

Apple の最新リリースの iOS18、iPadOS18、および macOS Sequoia システムでは、さまざまな理由で紛失または破損した写真やビデオをユーザーが簡単に回復できるように設計された重要な機能が写真アプリケーションに追加されました。この新機能では、写真アプリのツール セクションに「Recovered」というアルバムが導入され、ユーザーがデバイス上に写真ライブラリに含まれていない写真やビデオがある場合に自動的に表示されます。 「Recovered」アルバムの登場により、データベースの破損、カメラ アプリケーションが写真ライブラリに正しく保存されない、または写真ライブラリを管理するサードパーティ アプリケーションによって失われた写真やビデオに対する解決策が提供されます。ユーザーはいくつかの簡単な手順を実行するだけで済みます

1. Llama3 のアーキテクチャ このシリーズの記事では、llama3 を最初から実装します。 Llama3 の全体的なアーキテクチャ: Llama3 のモデル パラメーターをイメージします: Llama3 モデルのこれらのパラメーターの実際の値を見てみましょう。図[1] コンテキストウィンドウ (context-window) LlaMa クラスをインスタンス化する際、変数 max_seq_len によって context-window が定義されます。クラスには他にもパラメータがありますが、このパラメータは変圧器モデルに最も直接関係しています。ここでの max_seq_len は 8K です。図[2] 語彙サイズと注意力L

Go フレームワーク アーキテクチャの学習曲線は、Go 言語とバックエンド開発への慣れ、選択したフレームワークの複雑さ、つまり Go 言語の基本の十分な理解によって決まります。バックエンドの開発経験があると役立ちます。フレームワークの複雑さが異なると、学習曲線も異なります。

PHP でデータベース接続エラーを処理するには、次の手順を使用できます。 mysqli_connect_errno() を使用してエラー コードを取得します。 mysqli_connect_error() を使用してエラー メッセージを取得します。これらのエラー メッセージをキャプチャしてログに記録することで、データベース接続の問題を簡単に特定して解決でき、アプリケーションをスムーズに実行できるようになります。

MySQLi を使用して PHP でデータベース接続を確立する方法: MySQLi 拡張機能を含める (require_once) 接続関数を作成する (functionconnect_to_db) 接続関数を呼び出す ($conn=connect_to_db()) クエリを実行する ($result=$conn->query()) 閉じる接続 ( $conn->close())

70B モデルでは、数秒で 1,000 個のトークンを生成でき、これはほぼ 4,000 文字に相当します。研究者らは Llama3 を微調整し、高速化アルゴリズムを導入しました。ネイティブ バージョンと比較して、速度は 13 倍高速になりました。速いだけでなく、コード書き換えタスクのパフォーマンスは GPT-4o をも上回ります。この成果は、人気の AI プログラミング成果物 Cursor を開発したチーム、anysphere によるもので、OpenAI も投資に参加しました。有名な高速推論アクセラレーション フレームワークである Groq では、70BLlama3 の推論速度は 1 秒あたり 300 トークンを超える程度であることを知っておく必要があります。 Cursor の速度により、ほぼ瞬時に完全なコード ファイル編集を実現すると言えます。カースと言うと良い奴だと言う人もいる

6月26日のニュースによると、2024年世界移動通信会議上海(MWC上海)の開会式で、チャイナモバイル会長の楊潔氏がスピーチを行った。現在、人類社会は情報が支配し、情報とエネルギーが深く融合する第4次産業革命、すなわち「デジタルインテリジェンス革命」を迎えており、新たな生産力の形成が加速していると述べた。楊潔氏は、蒸気機関による「機械化革命」から、電気や内燃機関による「電化革命」、コンピューターやインターネットによる「情報革命」に至るまで、各段階の産業革命は、 「情報」と「エネルギー」が生産性向上をもたらす幹線
