MongoDB's New Matcher
Discuss on Hacker News MongoDB 2.5.0 (an unstable dev build) has a? new implementation of the “Matcher” . The old Matcher is the bit of code in Mongo that takes a query and decides if a document matches a query expression. It also has to
Discuss on Hacker News
MongoDB 2.5.0 (an unstable dev build) has a?new implementation of the “Matcher”. The old Matcher is the bit of code in Mongo that takes a query and decides if a document matches a query expression. It also has to understand indexes so that it can do things like create a subsets of queries suitable for index covering. However, the structure of the Matcher code hasn’t changed significantly in more than four years and until this release, it lacked the ability to be easily extended. It was also structured in such a way that its knowledge could not be reused for query optimization. It was clearly ready for a rewrite.
The “New Matcher” in 2.5.0 is a total rewrite. It contains three separate pieces: an abstract syntax tree (hereafter ‘AST’) for expression match expressions, a parser from BSON into said AST, and a Matcher API layer that simulates the old Matcher interface while using all new internals. This new version is much easier to extend, easier to reason about, and will allow us to use the same structure for matching as for query analysis and rewriting.
This matcher rewrite is part of a larger project to restructure query execution, to optimize them, and to lay the groundwork for more advanced queries in the future. One planned optimization is index intersection. For example, if you have an index on each of ‘a’ and ‘b’ attributes, we want a query of the form?{ a : 5 , b : 6 }?to do an index intersection of the two indexes rather than just use one index and discard the documents from that index that don’t match. Index intersection would also be suitable for merging geo-spatial, text and regular indexes together in fun and interesting ways (i.e. a query to return all the users in a 3.5 mile radius of a location with a greater than #x# reputation who are RSVP’ed ‘yes’ for an event).
A good example of an extension we’d like to enable is self referential queries, such as finding all documents where a = b + c. (This would be written?{ a : { $sum : [ “$b” , “$c” ] } }). With the new Matcher, such queries are easy to implement as a native part of the language.
Now that the Matcher re-write is ready for testing, we’d love people to help test it by trying out MongoDB 2.5.0. (Release Notes)
Code
- AST Root
- Parser Root
By Eliot Horowitz, 10gen CTO, MongoDB core contributor. You can find the original post on his personal blog.?
原文地址:MongoDB's New Matcher, 感谢原作者分享。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Navicat を使用して MongoDB に接続するには、次の手順を実行する必要があります: Navicat をインストールする MongoDB 接続を作成します: a. 接続名、ホスト アドレス、およびポートを入力します b. 認証情報を入力します (必要な場合) SSL 証明書を追加します (必要な場合) 接続を確認します接続を保存する

.NET 4.0 はさまざまなアプリケーションの作成に使用され、オブジェクト指向プログラミング、柔軟性、強力なアーキテクチャ、クラウド コンピューティングの統合、パフォーマンスの最適化、広範なライブラリ、セキュリティ、スケーラビリティ、データ アクセス、モバイルなどの豊富な機能をアプリケーション開発者に提供します。開発サポート。

サーバーレス アーキテクチャでは、Java 関数をデータベースと統合して、データベース内のデータにアクセスして操作できます。主な手順には、Java 関数の作成、環境変数の構成、関数のデプロイ、および関数のテストが含まれます。これらの手順に従うことで、開発者はデータベースに保存されているデータにシームレスにアクセスする複雑なアプリケーションを構築できます。

この記事では、自動拡張を実現するためにDebianシステムでMongodbを構成する方法を紹介します。主な手順には、Mongodbレプリカセットとディスクスペース監視のセットアップが含まれます。 1。MongoDBのインストール最初に、MongoDBがDebianシステムにインストールされていることを確認してください。次のコマンドを使用してインストールします。sudoaptupdatesudoaptinstinstall-yymongodb-org2。mongodbレプリカセットMongodbレプリカセットの構成により、自動容量拡張を達成するための基礎となる高可用性とデータ冗長性が保証されます。 Mongodbサービスを開始:Sudosystemctlstartmongodsudosys

この記事では、Debianシステムで非常に利用可能なMongoDBデータベースを構築する方法について説明します。データのセキュリティとサービスが引き続き動作し続けるようにするための複数の方法を探ります。キー戦略:レプリカセット:レプリカセット:レプリカセットを使用して、データの冗長性と自動フェールオーバーを実現します。マスターノードが失敗すると、レプリカセットが自動的に新しいマスターノードを選択して、サービスの継続的な可用性を確保します。データのバックアップと回復:MongoDumpコマンドを定期的に使用してデータベースをバックアップし、データ損失のリスクに対処するために効果的な回復戦略を策定します。監視とアラーム:監視ツール(プロメテウス、グラファナなど)を展開して、MongoDBの実行ステータスをリアルタイムで監視し、

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

Pinetworkは、革新的なモバイルバンキングプラットフォームであるPibankを立ち上げようとしています! Pinetworkは本日、Pibankと呼ばれるElmahrosa(Face)Pimisrbankのメジャーアップデートをリリースしました。これは、従来の銀行サービスと、フィアット通貨の原子交換と暗号通貨の原子交換を実現します(resuptocursisを使用するなど、聖職者のような聖職者など、 DC)。ピバンクの魅力は何ですか?見つけましょう!ピバンクの主な機能:銀行口座と暗号通貨資産のワンストップ管理。リアルタイムトランザクションをサポートし、生物種を採用します
