目次
0. 成本计算的总原则" >0. 成本计算的总原则
1. range成本的计算与分析" >1. range成本的计算与分析
1.1 range返回的记录数" >1.1 range返回的记录数
2.2 CPU COST" >2.2 CPU COST
2.3 IO COST" >2.3 IO COST
2.4 全表扫描的成本" >2.4 全表扫描的成本
1.5 关于range执行计划的分析" >1.5 关于range执行计划的分析
2.6 验证" >2.6 验证
1.7 一些限制" >1.7 一些限制
2. ref成本的计算与分析" >2. ref成本的计算与分析
2.1 ref返回的记录数" >2.1 ref返回的记录数
2.5 关于ref执行计划的分析" >2.5 关于ref执行计划的分析
3. 上面计算的局限性" >3. 上面计算的局限性
4. 案例中使用的数据和表" >4. 案例中使用的数据和表
ホームページ データベース mysql チュートリアル MySQL源码:Range和Ref优化的成本评估

MySQL源码:Range和Ref优化的成本评估

Jun 07, 2016 pm 04:34 PM
mysql range ref 最適化 始める 料金 ソースコード 評価する

在开始介绍index merge/ROR优化之前,打算先介绍MySQL是如何对range/ref做成本评估的。MySQL是基于成本(cost)模型选择执行计划,在多个range,全表扫描,ref之间会选择成本最小的作为最终的执行计划。仍然强烈建议先阅读登博的slide:《查询优化浅析》,文中

在开始介绍index merge/ROR优化之前,打算先介绍MySQL是如何对range/ref做成本评估的。MySQL是基于成本(cost)模型选择执行计划,在多个range,全表扫描,ref之间会选择成本最小的作为最终的执行计划。仍然强烈建议先阅读登博的slide:《查询优化浅析》,文中较为详细的介绍MySQL在range优化时成本的计算。

本文将继续介绍range/ref执行计划选择的一些不容忽略的细节。希望看客能够通过此文能够了解更多细节。

目录

  • 0. 成本计算的总原则
  • 1. range成本的计算与分析
    • 1.1 range返回的记录数
    • 1.2 CPU COST
    • 1.3 IO COST
    • 1.4 全表扫描的成本
    • 1.5 关于range执行计划的分析
    • 1.6 验证
    • 1.7 一些限制
  • 2. ref成本的计算与分析
    • 2.1 ref返回的记录数
    • 2.2 CPU COST
    • 2.3 IO COST
    • 2.4 全表扫描的成本
    • 2.5 关于ref执行计划的分析
    • 2.6 验证
  • 3. 上面计算的局限性
  • 4. 案例中使用的数据和表

0. 成本计算的总原则

MySQL的一个执行计划,有两部分成本,CPU成本(CPU COST)和IO成本(IO COST)。CPU COST是指查询出纪录后,需要做过滤等处理的时候的CPU消耗,IO COST是指,从存储引擎读取数据时需要做的IO消耗。

总成本 = CPU COST + IO COST

补充说明:(1) IO成本计算不考虑缓存的影响。因为在优化器本身是无法预知需要的数据到底在内存中还是磁盘上。

1. range成本的计算与分析

MySQL使用一颗SEL_ARG的树形结构描述了WHERE条件中的range,如果有多个range,则使用递归的方式遍历SEL_ARG结构,在前面详细的介绍range的红黑树结构,以及MySQL如何遍历之。

接上文,这里将看看,遍历到最后,MySQL如何计算一个简单range的成本。

1.1 range返回的记录数

MySQL首先计算range需要返回都少纪录,通过函数check_quick_select返回对某个索引做range查询大约命中多少条纪录。

found_records= check_quick_select(param, idx, *key, update_tbl_stats);
ログイン後にコピー

1.2 CPU COST

#define TIME_FOR_COMPARE   5    // 5 compares == one read
double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
ログイン後にコピー

1.3 IO COST

对于InnoDB的二级索引,且不是覆盖扫描:

found_read_time := number of ranges + found_records
ログイン後にコピー

这里,found_records是主要部分,number of ranges表示一共有多少个range,这是一个修正值,表示IO COST不小于range的个数。

1.4 全表扫描的成本

具体的,对于InnoDB表,我们来看:

read_time= number of total page + (records / TIME_FOR_COMPARE + 1) + 1.1;
ログイン後にコピー

对于InnoDB取值为:主键索引(数据)所使用的page数量(stat_clustered_index_size)

对于MyISAM取值为:stats.data_file_length/IO_SIZE + file->tables

1.5 关于range执行计划的分析

这里来看看,range的选择度(selectivty)大概为多少的时候,会放弃range优化,而选择全表扫描。下面时一个定量的分析:

(1) 假设总记录数为R;range需要返回的纪录数为r

(2) 假设该表的总页面数(IO COST)为P;单个页面纪录数为c

\[r+1\frac{r}{5} > P + \frac{R}{5} + 1 + 1.1 \]

\[ \frac{r}{R} > \frac{1}{6} + \frac{5}{6} * \frac{P}{R} + \frac{5.5}{6*R} \]

\[ \frac{r}{R} > \frac{1}{6} + \frac{5}{6} * \frac{1}{c} \frac{5.5}{6*R} \]

在我的测试案例中,P=4,R=1016 ,有

\[ \frac{r}{R} > 0.171 \]

也就是说这个案例中,如果选择度(selectivity)高于17.1%就会放弃range优化,而走全表扫描。这里纪录数超过1016*0.171=173时将放弃range优化。

1.6 验证

MySQL通过函数check_quick_select返回range可能扫描的记录数,所以,这里通过对该函数设置断点,并手动设置返回值,通过此来验证上面对selectivity的计算,详细地:

(gdb) p head->file->stats.records
$1 = 1016
(gdb) p head->file->scan_time()
$3 = 4
(gdb) p 1016*(1.0/6+(5.0/6)*(4.0/1016)+5.5/(6*1016))
$43 = 173.58333333333329
(gdb) b check_quick_select
Breakpoint 5 at 0x679377: file opt_range.cc, line 7436.
(gdb) c
Continuing.
遇到断点:
(gdb) return 173
看到:
root@test 05:07:52>explain select * from users where reg_date >= '2012-09-20 12:00:00';
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key         | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
|  1 | SIMPLE      | users | range | ind_regdate   | ind_regdate | 9       | NULL |  173 | Using where |
+----+-------------+-------+-------+---------------+-------------+---------+------+------+-------------+
(gdb) return 174
看到
root@test 05:08:05>explain select * from users where reg_date >= '2012-09-20 12:00:00';
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | users | ALL  | ind_regdate   | NULL | NULL    | NULL | 1016 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
ログイン後にコピー

上面可以看到,如果range命中的记录数超过173的时候,就会放弃range,选择全表扫描。

1.7 一些限制

(1) 无论时InnoDB还是MyISAM的scan_time,range返回的记录数都不是精确值,而且对于InnoDB,总记录数也不是精确值,所以上面只是一个High level的预估。

(2) 上面案例中,条纪录很短,所以看到总page很少,实际情况,单条纪录更大,也就是上面的单个页面纪录数为c更小,所以通常选择度更高的时候,才会选择全表扫描。

2. ref成本的计算与分析

2.1 ref返回的记录数

ref优化的时候,计算返回的记录数从代码上来看要复杂很多,但是思想很简单。

思路:在range优化阶段,任何等值都会当作范围条件(参考1,参考2)。

对于kp1 = const and kp2 = const这类ref,MySQL将直接使用range优化时返回的结果,这个结果是通过存储引擎接口records_in_range返回。

还有一类较为特殊的ref,kp1 = const and kp2 > const,对于此类ref,range优化的时候,会使用两个索引列,但是ref只能用一个索引列。这时,ref首先根据索引统计信息(show index from users中Cardinality的值)预估。因为这里有range优化的值,还会做一次修正,因为range使用了更多的索引字段。修正逻辑为:如果发现索引统计信息太过保守(例如数据分布不均匀时,遇到一个热点),这时会用range优化的值修正。

所以,返回的纪录数,使用如下代码获取:

records= keyinfo->rec_per_key[max_key_part-1]
if(records quick_rows[key]...)
  records= (double)table->quick_rows[key];
ログイン後にコピー

2.2 CPU COST

CPU COST := records/(double) TIME_FOR_COMPARE;
ログイン後にコピー

2.3 IO COST

ref在做IO成本评估的时候,基本同range相同,ref命中多少纪录则需要多少个IO COST。但是跟range优化打不同的是,这里做了一个修正(range优化并没有做),也是IO COST最坏不会超过全表扫描IO消耗的3倍(或者总记录数除以10),有下面的代码:

s->worst_seeks= min((double) s->found_records / 10,
                        (double) s->read_time*3);
IO COST := record_count*min(tmp,s->worst_seeks);
ログイン後にコピー

这里record_count是前一次关联后的记录数。tmp是当前ref命中的记录数。这个修正的逻辑是很好理解的:即使加上索引扫描其io cost仍然是有限度的。因为range的评估并没有加上这个修正,所以就导致了一些奇怪的事情发生了,后面我们再详细分析这一点。

2.4 全表扫描的成本

简单版本(不考虑多表关联):

scan_time() + s->records/TIME_FOR_COMPARE
ログイン後にコピー

scan_time()为存储引擎返回的全表扫描IO次数;s->records为存储引擎维护的单表总纪录数。

复杂版本(有多表关联):

假设前面关联后的纪录数为record_count,当前表的where条件将过滤后剩余3/4的纪录(不满足where条件的为1/4),并将这个值记为rnd_records。

(s->records - rnd_records)/TIME_FOR_COMPARE +
record_count * (rnd_records/TIME_FOR_COMPARE)
ログイン後にコピー

这里假设将过滤1/4数据,实际代码中还将做一次修正,如果有range计算,假设其命中q条纪录,那么就认为将过滤s->records-q条纪录。

2.5 关于ref执行计划的分析

上面的分析,可以看到,ref成本有一部分是取min函数的,为了分析ref和全表扫描的临界条件,为了简化做下面的假设:

(1) scan_time()*3  records / 10
(2) scan_time()*3 
<p>第一个条件表示约30条纪录一个page;第二个条件是ref命中的记录数为总页面的3倍。</p>
<p>那么放弃ref全表扫描的条件是:</p>
<pre class="brush:php;toolbar:false">scan_time()*3 + r/5  > scan_time() + R/5
即:
scan_time()*2 > (R-r)/5
scan_time() > (R-r)/10
具体的:
ログイン後にコピー

(1) 假设总记录数为R;ref需要返回的纪录数为r

(2) 假设该表的总页面数(IO COST)为P;单个页面纪录数为c

那么range的代价超过全表扫描代价,则有:

\[3*P + \frac{r}{5} > P + \frac{R}{5} \]

\[\frac{r}{R} > 1 - \frac{10*P}{R}\]

\[\frac{r}{R} > 1 - \frac{10}{c}\]

在我的测试案例中,P=6.4,R=900 ,有

\[ \frac{r}{R} > 0.929 \]

对于具体的案例,由于取整的问题,会和上面有小小的偏差:

3*((int)6.39) + r/5 > 6.39453125 + 900/5
r > 841.97
ログイン後にコピー

2.6 验证

这里再通过gdb修改r的值来验证,因为ref命中纪录的预估是取range的计算值,所以:

gdb) set s->table->quick_rows[1]=841
(gdb) c
root@test 04:37:16>explain select * from users where reg_date = '2012-09-21 12:00:00';
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
|  1 | SIMPLE      | users | ref  | IND_REGDATE   | IND_REGDATE | 9       | const |  841 | Using where |
+----+-------------+-------+------+---------------+-------------+---------+-------+------+-------------+
1 row in set (47.61 sec)
(gdb) set s->table->quick_rows[1]=842
(gdb) c
root@test 04:38:46>explain select * from users where reg_date = '2012-09-21 12:00:00';
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | users | ALL  | IND_REGDATE   | NULL | NULL    | NULL |  900 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+
ログイン後にコピー

另一个结论是,如果当条记录很小,单个页面的记录数很多的话,只有选择度(selectivity)非常高的时候,MySQL才会放弃ref,走全表扫描,这也是,Vadim在2006年吐槽MySQL的一点。

3. 上面计算的局限性

上面的推倒尝试介绍一些通用的情况,但是实际上优化器中计算ref/range的成本时,会有一些不同:

(1) 无论时InnoDB还是MyISAM的scan_time,range返回的记录数都不是精确值,而且对于InnoDB,总记录数也不是精确值,所以上面只是一个High level的预估

(2) 上面案例中,条纪录很短,所以看到总page很少,实际情况,单条纪录更大,也就是上面的单个页面纪录数为c更小,所以通常选择度更高的时候,才会选择全表扫描。

(3) 上面的计算,都不是覆盖扫描的情况,覆盖扫描的时候,成本计算与上面略有不同

(4) 上面都是使用gdb修改某些值的方式来验证。如果想通过创建一个表,够造某个索引的区分度/选制度,因为scan_time和返回的记录数都是预估的,这样的方式是不行的

4. 案例中使用的数据和表

CREATE TABLE `users` (
  `id` int(11) NOT NULL,
  `nick` varchar(32) DEFAULT NULL,
  `reg_date` datetime DEFAULT NULL,
  KEY `IND_NICK` (`nick`),
  KEY `IND_REGDATE` (`reg_date`),
  KEY `IND_ID` (`id`)
) ENGINE=MyISAM
for id in `seq 1 886`; \
do mysql -uroot test -e \
"insert into users values($id,char(round(ord('A') + rand()*(ord('z')-ord('A')))),\
'2012-09-21 12:00:00')"  ;done
for id in `seq 887 900`; \
do mysql -uroot test -e \
"insert into users values($id,char(round(ord('A') + rand()*(ord('z')-ord('A')))),\
'2012-09-20 12:00:00')"  ;done
ログイン後にコピー
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHP で MySQL クエリのパフォーマンスを最適化するにはどうすればよいですか? PHP で MySQL クエリのパフォーマンスを最適化するにはどうすればよいですか? Jun 03, 2024 pm 08:11 PM

MySQL クエリのパフォーマンスは、検索時間を線形の複雑さから対数の複雑さまで短縮するインデックスを構築することで最適化できます。 PreparedStatement を使用して SQL インジェクションを防止し、クエリのパフォーマンスを向上させます。クエリ結果を制限し、サーバーによって処理されるデータ量を削減します。適切な結合タイプの使用、インデックスの作成、サブクエリの使用の検討など、結合クエリを最適化します。クエリを分析してボトルネックを特定し、キャッシュを使用してデータベースの負荷を軽減し、オーバーヘッドを最小限に抑えます。

PHP で MySQL のバックアップと復元を使用するにはどうすればよいですか? PHP で MySQL のバックアップと復元を使用するにはどうすればよいですか? Jun 03, 2024 pm 12:19 PM

PHP で MySQL データベースをバックアップおよび復元するには、次の手順を実行します。 データベースをバックアップします。 mysqldump コマンドを使用して、データベースを SQL ファイルにダンプします。データベースの復元: mysql コマンドを使用して、SQL ファイルからデータベースを復元します。

PHP を使用して MySQL テーブルにデータを挿入するにはどうすればよいですか? PHP を使用して MySQL テーブルにデータを挿入するにはどうすればよいですか? Jun 02, 2024 pm 02:26 PM

MySQLテーブルにデータを挿入するにはどうすればよいですか?データベースに接続する: mysqli を使用してデータベースへの接続を確立します。 SQL クエリを準備します。挿入する列と値を指定する INSERT ステートメントを作成します。クエリの実行: query() メソッドを使用して挿入クエリを実行します。成功すると、確認メッセージが出力されます。

MySQL 8.4 で mysql_native_password がロードされていないエラーを修正する方法 MySQL 8.4 で mysql_native_password がロードされていないエラーを修正する方法 Dec 09, 2024 am 11:42 AM

MySQL 8.4 (2024 年時点の最新の LTS リリース) で導入された主な変更の 1 つは、「MySQL Native Password」プラグインがデフォルトで有効ではなくなったことです。さらに、MySQL 9.0 ではこのプラグインが完全に削除されています。 この変更は PHP および他のアプリに影響します

PHP で MySQL ストアド プロシージャを使用するにはどうすればよいですか? PHP で MySQL ストアド プロシージャを使用するにはどうすればよいですか? Jun 02, 2024 pm 02:13 PM

PHP で MySQL ストアド プロシージャを使用するには: PDO または MySQLi 拡張機能を使用して、MySQL データベースに接続します。ストアド プロシージャを呼び出すステートメントを準備します。ストアド プロシージャを実行します。結果セットを処理します (ストアド プロシージャが結果を返す場合)。データベース接続を閉じます。

PHP を使用して MySQL テーブルを作成するにはどうすればよいですか? PHP を使用して MySQL テーブルを作成するにはどうすればよいですか? Jun 04, 2024 pm 01:57 PM

PHP を使用して MySQL テーブルを作成するには、次の手順が必要です。 データベースに接続します。データベースが存在しない場合は作成します。データベースを選択します。テーブルを作成します。クエリを実行します。接続を閉じます。

C++ プログラムの最適化: 時間の複雑さを軽減する手法 C++ プログラムの最適化: 時間の複雑さを軽減する手法 Jun 01, 2024 am 11:19 AM

時間計算量は、入力のサイズに対するアルゴリズムの実行時間を測定します。 C++ プログラムの時間の複雑さを軽減するためのヒントには、適切なコンテナー (ベクター、リストなど) を選択して、データのストレージと管理を最適化することが含まれます。クイックソートなどの効率的なアルゴリズムを利用して計算時間を短縮します。複数の操作を排除して二重カウントを削減します。条件分岐を使用して、不必要な計算を回避します。二分探索などのより高速なアルゴリズムを使用して線形探索を最適化します。

Oracleデータベースとmysqlの違い Oracleデータベースとmysqlの違い May 10, 2024 am 01:54 AM

Oracle データベースと MySQL はどちらもリレーショナル モデルに基づいたデータベースですが、Oracle は互換性、スケーラビリティ、データ型、セキュリティの点で優れており、MySQL は速度と柔軟性に重点を置いており、小規模から中規模のデータ セットに適しています。 ① Oracle は幅広いデータ型を提供し、② 高度なセキュリティ機能を提供し、③ エンタープライズレベルのアプリケーションに適しています。① MySQL は NoSQL データ型をサポートし、② セキュリティ対策が少なく、③ 小規模から中規模のアプリケーションに適しています。

See all articles