Using Spark to Ignite Data Analytics
At eBay we want our customers to have the best experience possible. We use data analytics to improve user experiences, provide relevant offers, optimize performance, and create many, many other kinds of value. One way eBay supports this va
At eBay we want our customers to have the best experience possible. We use data analytics to improve user experiences, provide relevant offers, optimize performance, and create many, many other kinds of value. One way eBay supports this value creation is by utilizing data processing frameworks that enable, accelerate, or simplify data analytics. One such framework is Apache Spark. This post describes how Apache Spark fits into eBay’s Analytic Data Infrastructure.
What is Apache Spark?
The Apache Spark web site?describes Spark as “a fast and general engine for large-scale data processing.” Spark is a framework that enables parallel, distributed data processing. It offers a simple programming abstraction that provides powerful cache and persistence capabilities. The Spark framework can be deployed through Apache Mesos, Apache Hadoop via Yarn, or Spark’s own cluster manager. Developers can use the Spark framework via several programming languages including Java, Scala, and Python. Spark also serves as a foundation for additional data processing frameworks such as Shark, which provides SQL functionality for Hadoop.
Spark is an excellent tool for iterative processing of large datasets. One way Spark is suited for this type of processing is through its Resilient Distributed Dataset (RDD). In the paper titled Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, RDDs are described as “…fault-tolerant, parallel data structures that let users explicitly persist intermediate results in memory, control their partitioning to optimize data placement, and manipulate them using a rich set of operators.” By using RDDs, ?programmers can pin their large data sets to memory, thereby supporting high-performance, iterative processing. Compared to reading a large data set from disk for every processing iteration, the in-memory solution is obviously much faster.
The diagram below shows a simple example of using Spark to read input data from HDFS, perform a series of iterative operations against that data using RDDs, and write the subsequent output back to HDFS.
In the case of the first map operation into RDD(1), not all of the data could fit within the memory space allowed for RDDs. In such a case, the programmer is able to specify what should happen to the data that doesn’t fit. The options include spilling the computed data to disk and recreating it upon read. We can see in this example how each processing iteration is able to leverage memory for the reading and writing of its data. This method of leveraging memory is likely to be 100X faster than other methods that rely purely on disk storage for intermittent results.
Apache Spark at eBay
Today Spark is most commonly leveraged at eBay through Hadoop via Yarn. Yarn manages the Hadoop cluster’s resources and allows Hadoop to extend beyond traditional map and reduce jobs by employing Yarn containers to run generic tasks. Through the Hadoop Yarn framework, eBay’s Spark users are able to leverage clusters approaching the range of 2000 nodes, 100TB of RAM, and 20,000 cores.
The following example illustrates Spark on Hadoop via Yarn.
The user submits the Spark job to Hadoop. The Spark application master starts within a single Yarn container, then begins working with the Yarn resource manager to spawn Spark executors – as many as the user requested. These Spark executors will run the Spark application using the specified amount of memory and number of CPU cores. In this case, the Spark application is able to read and write to the cluster’s data residing in HDFS. This model of running Spark on Hadoop illustrates Hadoop’s growing ability to provide a singular, foundational platform for data processing over shared data.
The eBay analyst community includes a strong contingent of Scala users. Accordingly, many of eBay’s Spark users are writing their jobs in Scala. These jobs are supporting discovery through interrogation of complex data, data modelling, and data scoring, among other use cases. Below is a code snippet from a Spark Scala application. This application uses Spark’s machine learning library, MLlib, to cluster eBay’s sellers via KMeans. The seller attribute data is stored in HDFS.
/** * read input files and turn into usable records */ var table = new SellerMetric() val model_data = sc.sequenceFile[Text,Text]( input_path ,classOf[Text] ,classOf[Text] ,num_tasks.toInt ).map( v => parseRecord(v._2,table) ).filter( v => v != null ).cache .... /** * build training data set from sample and summary data */ val train_data = sample_data.map( v => Array.tabulate[Double](field_cnt)( i => zscore(v._2(i),sample_mean(i),sample_stddev(i)) ) ).cache /** * train the model */ val model = KMeans.train(train_data,CLUSTERS,ITERATIONS) /** * score the data */ val results = grouped_model_data.map( v => ( v._1 ,model.predict( Array.tabulate[Double](field_cnt)( i => zscore(v._2(i),sample_mean(i),sample_stddev(i)) ) ) ) ) results.saveAsTextFile(output_path) ログイン後にコピー |
In addition to ?Spark Scala users, several folks at eBay have begun using Spark with Shark to accelerate their Hadoop SQL performance. Many of these Shark queries are easily running 5X faster than their Hive counterparts. While Spark at eBay is still in its early stages, usage is in the midst of expanding from experimental to everyday as the number of Spark users at eBay continues to accelerate.
The Future of Spark at eBay
Spark is helping eBay create value from its data, and so the future is bright for Spark at eBay. Our Hadoop platform team has started gearing up to formally support Spark on Hadoop. Additionally, we’re keeping our eyes on how Hadoop continues to evolve in its support for frameworks like Spark, how the community is able to use Spark to create value from data, and how companies like Hortonworks and Cloudera are incorporating Spark into their portfolios. Some groups within eBay are looking at spinning up their own Spark clusters outside of Hadoop. These clusters would either leverage more specialized hardware or be application-specific. Other folks are working on incorporating eBay’s already strong data platform language extensions into the Spark model to make it even easier to leverage eBay’s data within Spark. In the meantime, we will continue to see adoption of Spark increase at eBay. This adoption will be driven by chats in the hall, newsletter blurbs, product announcements, industry chatter, and Spark’s own strengths and capabilities.
原文地址:Using Spark to Ignite Data Analytics, 感谢原作者分享。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











ChatGPTは今年半年以上流行っていますが、その人気はまったく衰えていません。ディープラーニングと NLP も再び注目を集めています。社内の何人かの友人が、Java 開発者である私に、どうやって人工知能を始めたらよいか尋ねてきたのですが、AI を学習するための隠された Java ライブラリを取り出して、皆さんに紹介する時期が来たのです。これらのライブラリとフレームワークは、機械学習、深層学習、自然言語処理などのための幅広いツールとアルゴリズムを提供します。 AI プロジェクトの具体的なニーズに応じて、最適なライブラリまたはフレームワークを選択し、さまざまなアルゴリズムの実験を開始して AI ソリューションを構築できます。 1.Deeplearning4j Java および Scala 用のオープンソースの分散ディープラーニング ライブラリです。ディープラーニング

ビッグデータ時代の到来により、データ処理の重要性はますます高まっています。さまざまなデータ処理タスクのために、さまざまなテクノロジーが登場しています。中でもSparkは大規模なデータ処理に適した技術として、さまざまな分野で広く活用されています。また、効率的なプログラミング言語としてGo言語も近年ますます注目を集めています。この記事では、Go 言語で Spark を使用して効率的なデータ処理を実現する方法を説明します。まず、Spark の基本的な概念と原則をいくつか紹介します。

Java ビッグ データ テクノロジ スタック: Hadoop、Spark、Kafka などのビッグ データ分野における Java のアプリケーションを理解します。データ量が増加し続けるにつれて、今日のインターネット時代ではビッグ データ テクノロジが注目のトピックになっています。ビッグデータの分野では、Hadoop、Spark、Kafka などのテクノロジーの名前をよく耳にします。これらのテクノロジーは重要な役割を果たしており、広く使用されているプログラミング言語である Java もビッグデータの分野で大きな役割を果たしています。この記事では、Java のアプリケーション全般に焦点を当てます。

PHP は、学習が容易で、オープンソースで、クロスプラットフォームであるため、非常に人気のあるサーバーサイド プログラミング言語です。現在、多くの大企業は PHP 言語を使用して Facebook や WordPress などのアプリケーションを構築しています。 Spark は、Web アプリケーションを構築するための高速かつ軽量の開発フレームワークです。これは Java 仮想マシン (JVM) に基づいており、PHP と連携します。この記事では、PHP と Spark を使用して Web アプリケーションを構築する方法を紹介します。 PHPとは何ですか? PH

データ フォルダーには、ソフトウェア設定やインストール パッケージなどのシステム データとプログラム データが含まれています。データ フォルダー内の各フォルダーは、データ ファイルがファイル名データを参照しているか拡張子を参照しているかに関係なく、異なる種類のデータ ストレージ フォルダーを表します。 , これらはすべて、システムまたはプログラムによってカスタマイズされたデータ ファイルです。データは、データ ストレージのためのバックアップ ファイルです。通常、meidaplayer、メモ帳、または Word で開くことができます。

mysql ロード データの文字化けの解決策: 1. 文字化けしている SQL ステートメントを見つけます; 2. ステートメントを「LOAD DATA LOCAL INFILE "employee.txt" INTO TABLE EMPLOYEE Character set utf8;」に変更します。

データ量が増加し続けるにつれ、大規模なデータ処理が企業が直面し、解決しなければならない問題となっています。従来のリレーショナル データベースではもはやこの需要を満たすことができず、大規模データの保存と分析には、Hadoop、Spark、Flink などの分散コンピューティング プラットフォームが最適な選択肢となっています。データ処理ツールの選択プロセスでは、開発と保守が簡単な言語として、PHP が開発者の間でますます人気が高まっています。この記事では、大規模なデータ処理に PHP を活用する方法とその方法について説明します。

現在のインターネット時代において、大量のデータの処理は、あらゆる企業や機関が直面する必要がある問題です。 PHP は広く使用されているプログラミング言語であるため、データ処理の面でも時代に対応する必要があります。大量のデータをより効率的に処理するために、PHP 開発には Spark や Hadoop などのビッグ データ処理ツールが導入されています。 Spark は、大規模なデータ セットの分散処理に使用できるオープン ソース データ処理エンジンです。 Spark の最大の特徴は、高速なデータ処理速度と効率的なデータ ストレージです。
