IaaS Provider iland chooses Cassandra over MongoDB
iland chose Apache Cassandra over MongoDB because Cassandra provides constant time writes no matter how big the data set grows and for its distributed nature as well as its massive scalability, reliability, performance, availability, consi

-Julien Anguenot, ?Director of Software Engineering at iland
Julien Anguenot ?Director of Software Engineering at iland
Follow @anguenot
iland
iland internet solutions, founded in 1995, is a pure IaaS player providing enterprise cloud infrastructure and services with several datacenters in North America, Europe and Asia.
iland platform with Cassandra
Cassandra is the sole database leveraged by the land platform, distributed across iland’s datacenters, which is the foundation of the customer-facing ECS2 iland portal.
The platform stores time series: real-time (20 seconds samples coming from vSphere) and historical rollups (1m, 1h, 1d, 1w and 1month) for dozens of virtual machine’s performance counters, corresponding resource pools and networks.
Also, Cassandra stores usage corresponding real-time and historical billing information as well as infrastructure configuration, user information etc. The platform also provides predictive analytics that help companies monitor performance, achieve consistency and anticipate growth requirements.
The iland portal is essentially an easy to use and understand front end (web and mobile) for the iland platform solutions – it covers a wealth of functionality including offering visibility into resource consumption, billing, performance, the impact of change and other key areas. It also provides usage and billing based alerts as well as cloud management features.
Evaluating MongoDB and Cassandra
iland chose Apache Cassandra over MongoDB because Cassandra provides constant time writes no matter how big the data set grows and for its distributed nature as well as its “massive” scalability, reliability, performance, availability, consistency and simplicity.
Constant-time writes no matter how big the data is a must for our real-time performance counters collection since the amount of virtual machines to collect from will increase to ten of thousands along with workers concurrently performing operations at the application level.
Multi-datacenter deployment
We use a Cassandra 2.0.x cluster distributed across 5 datacenters (Los Angeles, CA – Reston, VA – London, UK – Manchester, UK – Singapore)
iland uses the 20x Debian deb packages hosted by the Apache foundation on Ubuntu 12.04 LTS.
We use CQL3 over thrift at the moment, using Astyanax, but we are planning to switch to the DataStax CQL Java driver when Astyanax 2.0 will be released.
Each datacenter has at least one rack of 3 nodes and all data is replicated across all nodes in the cluster.
To date: total cluster nodes is 18 and and we are getting close to 1TB of data (application has been deployed empty in September 2013 with the iland ECS2 brand new offering with no legacy data to migrate over to Cassandra)
?
(RF = replication factor)
?
RF = 3, W – LOCAL_QUORUM (2 nodes), R – LOCAL_QUORUM (2 nodes)
?
This configuration allows for a single node to fail while still serving both READS and WRITES. This setup comes at a cost of having a larger data footprint in terms of storage size. This allows us to use Cassandra’s tunable consistency to our advantage and ensure that all reads are consistent, yet keeping our availability as high as possible when running on 3 nodes.
?
Cassandra nodes are running off Ubuntu powered virtual machines (in vSphere). Each node has 16GB of RAM and 8 vCPUs
?
Getting started
My advice would be to start w/ a single-node instance to avoid clustering related concerns initially and use CQL3 (vs thrift) from the start.
?
Documentation is great, issue tracker and mailing list are great source of information, upgrade and maintenance of Cassandra are painless and drivers such as the DataStax CQL drivers for Python or Java as well as Netflix’s Astyanax have been working just great for us.
原文地址:IaaS Provider iland chooses Cassandra over MongoDB, 感谢原作者分享。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











この記事では、DockerのMySQLメモリ使用量を最適化することを調査します。 監視手法(Docker統計、パフォーマンススキーマ、外部ツール)および構成戦略について説明します。 これらには、Dockerメモリの制限、スワッピング、およびcgroupsが含まれます

この記事では、MySQLの「共有ライブラリを開くことができない」エラーについて説明します。 この問題は、必要な共有ライブラリ(.so/.dllファイル)を見つけることができないMySQLの障害に起因しています。ソリューションには、システムのパッケージMを介してライブラリのインストールを確認することが含まれます。

この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

この記事では、PHPMyAdminの有無にかかわらず、LinuxにMySQLを直接インストールするのとPodmanコンテナを使用します。 それは、各方法のインストール手順を詳述し、孤立、携帯性、再現性におけるポッドマンの利点を強調しますが、

この記事では、自己完結型のサーバーレスリレーショナルデータベースであるSQLiteの包括的な概要を説明します。 SQLiteの利点(シンプルさ、移植性、使いやすさ)と短所(同時性の制限、スケーラビリティの課題)を詳しく説明しています。 c

このガイドは、HomeBrewを使用してMacOSに複数のMySQLバージョンをインストールおよび管理することを示しています。 Homebrewを使用して設置を分離し、紛争を防ぐことを強調しています。 この記事では、インストール、開始/停止サービス、および最高のPRAを詳述しています

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]
