Spark on YARN
Spark在YARN中有yarn-cluster和yarn-client两种运行模式: I. Yarn Cluster Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该Application
Spark在YARN中有yarn-cluster和yarn-client两种运行模式:
I. Yarn Cluster
Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。因为Driver程序在YARN中运行,所以事先不用启动Spark Master/Client,应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况。
by @Sandy Ryza
by 明风@taobao
从terminal的output中看到任务初始化更详细的四个步骤:
14/09/28 11:24:52 INFO RMProxy: Connecting to ResourceManager at hdp01/172.19.1.231:8032 14/09/28 11:24:52 INFO Client: Got Cluster metric info from ApplicationsManager (ASM), number of NodeManagers: 4 14/09/28 11:24:52 INFO Client: Queue info ... queueName: root.default, queueCurrentCapacity: 0.0, queueMaxCapacity: -1.0, queueApplicationCount = 0, queueChildQueueCount = 0 14/09/28 11:24:52 INFO Client: Max mem capabililty of a single resource in this cluster 8192 14/09/28 11:24:53 INFO Client: Uploading file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-examples_2.10-1.0.0-cdh5.1.0.jar 14/09/28 11:24:54 INFO Client: Uploading file:/usr/lib/spark/assembly/lib/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar 14/09/28 11:24:55 INFO Client: Setting up the launch environment 14/09/28 11:24:55 INFO Client: Setting up container launch context 14/09/28 11:24:55 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.master=\"spark://hdp01:7077\", -Dspark.app.name=\"org.apache.spark.examples.SparkPi\", -Dspark.eventLog.enabled=\"true\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ApplicationMaster, --class, org.apache.spark.examples.SparkPi, --jar , file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar, , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr) 14/09/28 11:24:55 INFO Client: Submitting application to ASM 14/09/28 11:24:55 INFO YarnClientImpl: Submitted application application_1411874193696_0003 14/09/28 11:24:56 INFO Client: Application report from ASM: application identifier: application_1411874193696_0003 appId: 3 clientToAMToken: null appDiagnostics: appMasterHost: N/A appQueue: root.spark appMasterRpcPort: -1 appStartTime: 1411874695327 yarnAppState: ACCEPTED distributedFinalState: UNDEFINED appTrackingUrl: http://hdp01:8088/proxy/application_1411874193696_0003/ appUser: spark
1. 由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a). 连接到RM
b). 从RM ASM(ApplicationsManager )中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d). 设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动Spark App Master,并向ResourceManager AsM注册
4. Spark ApplicationMaster从HDFS中找到jar文件,启动DAGscheduler和YARN Cluster Scheduler
5. ResourceManager向ResourceManager AsM注册申请container资源(INFO YarnClientImpl: Submitted application)
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
需要注意的是:
a). Spark中的localdir会被yarn.nodemanager.local-dirs替换
b). 允许失败的节点数(spark.yarn.max.worker.failures)为executor数量的两倍数量,最小为3.
c). SPARK_YARN_USER_ENV传递给spark进程的环境变量
d). 传递给app的参数应该通过–args指定。
部署:
环境介绍:
hdp0[1-4]四台主机
hadoop使用CDH 5.1版本: hadoop-2.3.0+cdh5.1.0+795-1.cdh5.1.0.p0.58.el6.x86_64
直接下载对应2.3.0的pre-build版本http://spark.apache.org/downloads.html
下载完毕后解压,检查spark-assembly目录:
file /home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar: Zip archive data, at least v2.0 to extract
然后输出环境变量HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR(可以设置到spark-env.sh中)
export HADOOP_CONF_DIR=/etc/hadoop/etc
export SPARK_JAR=/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
如果使用cloudera manager 5,在Spark Service的操作中可以找到Upload Spark Jar将spark-assembly上传到HDFS上。
Spark Jar Location (HDFS) spark_jar_hdfs_path |
/user/spark/share/lib/spark-assembly.jar 默认值 |
The location of the Spark jar in HDFS |
Spark History Location (HDFS) spark.eventLog.dir |
/user/spark/applicationHistory 默认值 |
The location of Spark application history logs in HDFS. Changing this value will not move existing logs to the new location. |
提交任务,此时在YARN的web UI和history Server上就可以看到运行状态信息。
spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar
II. yarn-client
(YarnClientClusterScheduler)查看对应类的文件
在yarn-client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。
配置YARN-Client模式同样需要HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR变量。
提交任务测试:
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar terminal output: 14/09/28 11:18:34 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.tachyonStore.folderName=\"spark-9287f0f2-2e72-4617-a418-e0198626829b\", -Dspark.eventLog.enabled=\"true\", -Dspark.yarn.secondary.jars=\"\", -Dspark.driver.host=\"hdp01\", -Dspark.driver.appUIHistoryAddress=\"\", -Dspark.app.name=\"Spark Pi\", -Dspark.jars=\"file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar\", -Dspark.fileserver.uri=\"http://172.19.17.231:53558\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\", -Dspark.master=\"yarn-client\", -Dspark.driver.port=\"35938\", -Dspark.httpBroadcast.uri=\"http://172.19.17.231:43804\", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ExecutorLauncher, --class, notused, --jar , null, --args 'hdp01:35938' , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr) 14/09/28 11:18:34 INFO Client: Submitting application to ASM 14/09/28 11:18:34 INFO YarnClientSchedulerBackend: Application report from ASM: appMasterRpcPort: -1 appStartTime: 1411874314198 yarnAppState: ACCEPTED ......
##最后将结果输出到terminal中
Pi is roughly 3.14528
^^
原文地址:Spark on YARN, 感谢原作者分享。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











この記事では、3 つの JavaScript パッケージ マネージャー (npm、yarn、pnpm) について説明し、これら 3 つのパッケージ マネージャーを比較し、npm、yarn、pnpm の違いと関係について説明します。助けてください。質問がある場合は、指摘してください。

Yarn も npm と同じく JavaScript のパッケージ管理ツールですが、この記事では、yarn のパッケージ管理ツールについて紹介します。

ChatGPTは今年半年以上流行っていますが、その人気はまったく衰えていません。ディープラーニングと NLP も再び注目を集めています。社内の何人かの友人が、Java 開発者である私に、どうやって人工知能を始めたらよいか尋ねてきたのですが、AI を学習するための隠された Java ライブラリを取り出して、皆さんに紹介する時期が来たのです。これらのライブラリとフレームワークは、機械学習、深層学習、自然言語処理などのための幅広いツールとアルゴリズムを提供します。 AI プロジェクトの具体的なニーズに応じて、最適なライブラリまたはフレームワークを選択し、さまざまなアルゴリズムの実験を開始して AI ソリューションを構築できます。 1.Deeplearning4j Java および Scala 用のオープンソースの分散ディープラーニング ライブラリです。ディープラーニング

ビッグデータ時代の到来により、データ処理の重要性はますます高まっています。さまざまなデータ処理タスクのために、さまざまなテクノロジーが登場しています。中でもSparkは大規模なデータ処理に適した技術として、さまざまな分野で広く活用されています。また、効率的なプログラミング言語としてGo言語も近年ますます注目を集めています。この記事では、Go 言語で Spark を使用して効率的なデータ処理を実現する方法を説明します。まず、Spark の基本的な概念と原則をいくつか紹介します。

Java ビッグ データ テクノロジ スタック: Hadoop、Spark、Kafka などのビッグ データ分野における Java のアプリケーションを理解します。データ量が増加し続けるにつれて、今日のインターネット時代ではビッグ データ テクノロジが注目のトピックになっています。ビッグデータの分野では、Hadoop、Spark、Kafka などのテクノロジーの名前をよく耳にします。これらのテクノロジーは重要な役割を果たしており、広く使用されているプログラミング言語である Java もビッグデータの分野で大きな役割を果たしています。この記事では、Java のアプリケーション全般に焦点を当てます。

PHP は、学習が容易で、オープンソースで、クロスプラットフォームであるため、非常に人気のあるサーバーサイド プログラミング言語です。現在、多くの大企業は PHP 言語を使用して Facebook や WordPress などのアプリケーションを構築しています。 Spark は、Web アプリケーションを構築するための高速かつ軽量の開発フレームワークです。これは Java 仮想マシン (JVM) に基づいており、PHP と連携します。この記事では、PHP と Spark を使用して Web アプリケーションを構築する方法を紹介します。 PHPとは何ですか? PH

React インストール ヤーンが内部コマンドではないことを報告し続ける問題の解決策: 1. コマンド「pm uninstallyarn -g」を使用してyarnをアンインストールします; 2. 「npm installyarn」を使用してyarnを再インストールします; 3. 「」を追加します。 C:\ WINDOWS\system32\node_modules\yarn\bin"; 4. cmd を再度開き、「yarn -v」コマンドを実行します。

データ量が増加し続けるにつれ、大規模なデータ処理が企業が直面し、解決しなければならない問題となっています。従来のリレーショナル データベースではもはやこの需要を満たすことができず、大規模データの保存と分析には、Hadoop、Spark、Flink などの分散コンピューティング プラットフォームが最適な選択肢となっています。データ処理ツールの選択プロセスでは、開発と保守が簡単な言語として、PHP が開発者の間でますます人気が高まっています。この記事では、大規模なデータ処理に PHP を活用する方法とその方法について説明します。
