Kafka+Storm+HDFS整合实践

Jun 07, 2016 pm 04:39 PM
に基づく 練習する 統合する

在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以

在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理。为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接一个消息中间件,如Kafka,可以整合Flume+Kafka,Flume作为消息的Producer,生产的消息数据(日志数据、业务请求数据等等)发布到Kafka中,然后通过订阅的方式,使用Storm的Topology作为消息的Consumer,在Storm集群中分别进行如下两个需求场景的处理:

  • 直接使用Storm的Topology对数据进行实时分析处理
  • 整合Storm+HDFS,将消息处理后写入HDFS进行离线分析处理

实时处理,只要开发满足业务需要的Topology即可,不做过多说明。这里,我们主要从安装配置Kafka、Storm,以及整合Kafka+Storm、整合Storm+HDFS、整合Kafka+Storm+HDFS这几点来配置实践,满足上面提出的一些需求。配置实践使用的软件包如下所示:

  • zookeeper-3.4.5.tar.gz
  • kafka_2.9.2-0.8.1.1.tgz
  • apache-storm-0.9.2-incubating.tar.gz
  • hadoop-2.2.0.tar.gz

程序配置运行所基于的操作系统为CentOS 5.11。

Kafka安装配置

我们使用3台机器搭建Kafka集群:

192.168.4.142   h1
192.168.4.143   h2
192.168.4.144   h3
ログイン後にコピー
ログイン後にコピー

在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。
首先,在h1上准备Kafka安装文件,执行如下命令:

cd /usr/local/
wget http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz
tar xvzf kafka_2.9.2-0.8.1.1.tgz
ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
ログイン後にコピー

修改配置文件/usr/local/kafka/config/server.properties,修改如下内容:

broker.id=0
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka
ログイン後にコピー

这里需要说明的是,默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在zookeeper.connect配置项中指定:

zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka
ログイン後にコピー

而且,需要手动在ZooKeeper中创建路径/kafka,使用如下命令连接到任意一台ZooKeeper服务器:

cd /usr/local/zookeeper
bin/zkCli.sh
ログイン後にコピー

在ZooKeeper执行如下命令创建chroot路径:

create /kafka ''
ログイン後にコピー

这样,每次连接Kafka集群的时候(使用--zookeeper选项),也必须使用带chroot路径的连接字符串,后面会看到。
然后,将配置好的安装文件同步到其他的h2、h3节点上:

scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h2:/usr/local/
scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h3:/usr/local/
ログイン後にコピー

最后,在h2、h3节点上配置,执行如下命令:

cd /usr/local/
ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
ログイン後にコピー

并修改配置文件/usr/local/kafka/config/server.properties内容如下所示:

broker.id=1  # 在h1修改
broker.id=2  # 在h2修改
ログイン後にコピー

因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。
在集群中的h1、h2、h3这三个节点上分别启动Kafka,分别执行如下命令:

bin/kafka-server-start.sh /usr/local/kafka/config/server.properties &
ログイン後にコピー

可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。
我们创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:

bin/kafka-topics.sh --create --zookeeper h1:2181,h2:2181,h3:2181/kafka --replication-factor 3 --partitions 5 --topic my-replicated-topic5
ログイン後にコピー

查看创建的Topic,执行如下命令:

bin/kafka-topics.sh --describe --zookeeper h1:2181,h2:2181,h3:2181/kafka --topic my-replicated-topic5
ログイン後にコピー

结果信息如下所示:

Topic:my-replicated-topic5     PartitionCount:5     ReplicationFactor:3     Configs:
     Topic: my-replicated-topic5     Partition: 0     Leader: 0     Replicas: 0,2,1     Isr: 0,2,1
     Topic: my-replicated-topic5     Partition: 1     Leader: 0     Replicas: 1,0,2     Isr: 0,2,1
     Topic: my-replicated-topic5     Partition: 2     Leader: 2     Replicas: 2,1,0     Isr: 2,0,1
     Topic: my-replicated-topic5     Partition: 3     Leader: 0     Replicas: 0,1,2     Isr: 0,2,1
     Topic: my-replicated-topic5     Partition: 4     Leader: 2     Replicas: 1,2,0     Isr: 2,0,1
ログイン後にコピー

上面Leader、Replicas、Isr的含义如下:

Partition: 分区
Leader   : 负责读写指定分区的节点
Replicas : 复制该分区log的节点列表
Isr      : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader
ログイン後にコピー

我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。
在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:

bin/kafka-console-producer.sh --broker-list h1:9092,h2:9092,h3:9092 --topic my-replicated-topic5
ログイン後にコピー

在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:

bin/kafka-console-consumer.sh --zookeeper h1:2181,h2:2181,h3:2181/kafka --from-beginning --topic my-replicated-topic5
ログイン後にコピー

可以在Producer终端上输入字符串消息行,然后回车,就可以在Consumer终端上看到消费者消费的消息内容。
也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。

Storm安装配置

Storm集群也依赖Zookeeper集群,要保证Zookeeper集群正常运行。Storm的安装配置比较简单,我们仍然使用下面3台机器搭建:

192.168.4.142   h1
192.168.4.143   h2
192.168.4.144   h3
ログイン後にコピー
ログイン後にコピー

首先,在h1节点上,执行如下命令安装:

cd /usr/local/
wget http://mirror.bit.edu.cn/apache/incubator/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz
tar xvzf apache-storm-0.9.2-incubating.tar.gz
ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
ログイン後にコピー

然后,修改配置文件conf/storm.yaml,内容如下所示:

 storm.zookeeper.servers:
     - "h1"
     - "h2"
     - "h3"
storm.zookeeper.port: 2181
#
nimbus.host: "h1"
supervisor.slots.ports:
    - 6700
    - 6701
    - 6702
    - 6703
storm.local.dir: "/tmp/storm"
ログイン後にコピー

将配置好的安装文件,分发到其他节点上:

scp -r /usr/local/apache-storm-0.9.2-incubating/ h2:/usr/local/
scp -r /usr/local/apache-storm-0.9.2-incubating/ h3:/usr/local/
ログイン後にコピー

最后,在h2、h3节点上配置,执行如下命令:

cd /usr/local/
ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
ログイン後にコピー

Storm集群的主节点为Nimbus,从节点为Supervisor,我们需要在h1上启动Nimbus服务,在从节点h2、h3上启动Supervisor服务:

bin/storm nimbus &
bin/storm supervisor &
ログイン後にコピー

为了方便监控,可以启动Storm UI,可以从Web页面上监控Storm Topology的运行状态,例如在h2上启动:

bin/storm ui &
ログイン後にコピー

这样可以通过访问http://h2:8080/来查看Topology的运行状况。

整合Kafka+Storm

消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际上,apache-storm-0.9.2-incubating这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm-kafka,可以直接使用,例如我使用的Maven依赖配置,如下所示:

          <dependency>
               <groupid>org.apache.storm</groupid>
               <artifactid>storm-core</artifactid>
               <version>0.9.2-incubating</version>
               <scope>provided</scope>
          </dependency>
          <dependency>
               <groupid>org.apache.storm</groupid>
               <artifactid>storm-kafka</artifactid>
               <version>0.9.2-incubating</version>
          </dependency>
          <dependency>
               <groupid>org.apache.kafka</groupid>
               <artifactid>kafka_2.9.2</artifactid>
               <version>0.8.1.1</version>
               <exclusions>
                    <exclusion>
                         <groupid>org.apache.zookeeper</groupid>
                         <artifactid>zookeeper</artifactid>
                    </exclusion>
                    <exclusion>
                         <groupid>log4j</groupid>
                         <artifactid>log4j</artifactid>
                    </exclusion>
               </exclusions>
          </dependency>
ログイン後にコピー

下面,我们开发了一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:

package org.shirdrn.storm.examples;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class MyKafkaTopology {
     public static class KafkaWordSplitter extends BaseRichBolt {
          private static final Log LOG = LogFactory.getLog(KafkaWordSplitter.class);
          private static final long serialVersionUID = 886149197481637894L;
          private OutputCollector collector;
          @Override
          public void prepare(Map stormConf, TopologyContext context,
                    OutputCollector collector) {
               this.collector = collector;              
          }
          @Override
          public void execute(Tuple input) {
               String line = input.getString(0);
               LOG.info("RECV[kafka -> splitter] " + line);
               String[] words = line.split("\\s+");
               for(String word : words) {
                    LOG.info("EMIT[splitter -> counter] " + word);
                    collector.emit(input, new Values(word, 1));
               }
               collector.ack(input);
          }
          @Override
          public void declareOutputFields(OutputFieldsDeclarer declarer) {
               declarer.declare(new Fields("word", "count"));         
          }
     }
     public static class WordCounter extends BaseRichBolt {
          private static final Log LOG = LogFactory.getLog(WordCounter.class);
          private static final long serialVersionUID = 886149197481637894L;
          private OutputCollector collector;
          private Map<string atomicinteger> counterMap;
          @Override
          public void prepare(Map stormConf, TopologyContext context,
                    OutputCollector collector) {
               this.collector = collector;    
               this.counterMap = new HashMap<string atomicinteger>();
          }
          @Override
          public void execute(Tuple input) {
               String word = input.getString(0);
               int count = input.getInteger(1);
               LOG.info("RECV[splitter -> counter] " + word + " : " + count);
               AtomicInteger ai = this.counterMap.get(word);
               if(ai == null) {
                    ai = new AtomicInteger();
                    this.counterMap.put(word, ai);
               }
               ai.addAndGet(count);
               collector.ack(input);
               LOG.info("CHECK statistics map: " + this.counterMap);
          }
          @Override
          public void cleanup() {
               LOG.info("The final result:");
               Iterator<entry atomicinteger>> iter = this.counterMap.entrySet().iterator();
               while(iter.hasNext()) {
                    Entry<string atomicinteger> entry = iter.next();
                    LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get());
               }
          }
          @Override
          public void declareOutputFields(OutputFieldsDeclarer declarer) {
               declarer.declare(new Fields("word", "count"));         
          }
     }
     public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException {
          String zks = "h1:2181,h2:2181,h3:2181";
          String topic = "my-replicated-topic5";
          String zkRoot = "/storm"; // default zookeeper root configuration for storm
          String id = "word";
          BrokerHosts brokerHosts = new ZkHosts(zks);
          SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
          spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
          spoutConf.forceFromStart = false;
          spoutConf.zkServers = Arrays.asList(new String[] {"h1", "h2", "h3"});
          spoutConf.zkPort = 2181;
          TopologyBuilder builder = new TopologyBuilder();
          builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5); // Kafka我们创建了一个5分区的Topic,这里并行度设置为5
          builder.setBolt("word-splitter", new KafkaWordSplitter(), 2).shuffleGrouping("kafka-reader");
          builder.setBolt("word-counter", new WordCounter()).fieldsGrouping("word-splitter", new Fields("word"));
          Config conf = new Config();
          String name = MyKafkaTopology.class.getSimpleName();
          if (args != null && args.length > 0) {
               // Nimbus host name passed from command line
               conf.put(Config.NIMBUS_HOST, args[0]);
               conf.setNumWorkers(3);
               StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
          } else {
               conf.setMaxTaskParallelism(3);
               LocalCluster cluster = new LocalCluster();
               cluster.submitTopology(name, conf, builder.createTopology());
               Thread.sleep(60000);
               cluster.shutdown();
          }
     }
}
</string></entry></string></string>
ログイン後にコピー

上面程序,在本地调试(使用LocalCluster)不需要输入任何参数,提交到实际集群中运行时,需要传递一个参数,该参数为Nimbus的主机名称。
通过Maven构建,生成一个包含依赖的single jar文件(不要把Storm的依赖包添加进去),例如storm-examples-0.0.1-SNAPSHOT.jar,在提交Topology程序到Storm集群之前,因为用到了Kafka,需要拷贝一下依赖jar文件到Storm集群中的lib目录下面:

cp /usr/local/kafka/libs/kafka_2.9.2-0.8.1.1.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/scala-library-2.9.2.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/metrics-core-2.2.0.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/snappy-java-1.0.5.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/zkclient-0.3.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/log4j-1.2.15.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/slf4j-api-1.7.2.jar /usr/local/storm/lib/
cp /usr/local/kafka/libs/jopt-simple-3.2.jar /usr/local/storm/lib/
ログイン後にコピー

然后,就可以提交我们开发的Topology程序了:

bin/storm jar /home/storm/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.MyKafkaTopology h1
ログイン後にコピー

可以通过查看日志文件(logs/目录下)或者Storm UI来监控Topology的运行状况。如果程序没有错误,可以使用前面我们使用的Kafka Producer来生成消息,就能看到我们开发的Storm Topology能够实时接收到并进行处理。
上面Topology实现代码中,有一个很关键的配置对象SpoutConfig,配置属性如下所示:

spoutConf.forceFromStart = false;
ログイン後にコピー

该配置是指,如果该Topology因故障停止处理,下次正常运行时是否从Spout对应数据源Kafka中的该订阅Topic的起始位置开始读取,如果forceFromStart=true,则之前处理过的Tuple还要重新处理一遍,否则会从上次处理的位置继续处理,保证Kafka中的Topic数据不被重复处理,是在数据源的位置进行状态记录。

整合Storm+HDFS

Storm实时计算集群从Kafka消息中间件中消费消息,有实时处理需求的可以走实时处理程序,还有需要进行离线分析的需求,如写入到HDFS进行分析。下面实现了一个Topology,代码如下所示:

package org.shirdrn.storm.examples;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;
import java.util.Random;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.storm.hdfs.bolt.HdfsBolt;
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat;
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat;
import org.apache.storm.hdfs.bolt.format.FileNameFormat;
import org.apache.storm.hdfs.bolt.format.RecordFormat;
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit;
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy;
import org.apache.storm.hdfs.bolt.sync.SyncPolicy;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
public class StormToHDFSTopology {
     public static class EventSpout extends BaseRichSpout {
          private static final Log LOG = LogFactory.getLog(EventSpout.class);
          private static final long serialVersionUID = 886149197481637894L;
          private SpoutOutputCollector collector;
          private Random rand;
          private String[] records;
          @Override
          public void open(Map conf, TopologyContext context,
                    SpoutOutputCollector collector) {
               this.collector = collector;    
               rand = new Random();
               records = new String[] {
                         "10001     ef2da82d4c8b49c44199655dc14f39f6     4.2.1     HUAWEI G610-U00     HUAWEI     2     70:72:3c:73:8b:22     2014-10-13 12:36:35",
                         "10001     ffb52739a29348a67952e47c12da54ef     4.3     GT-I9300     samsung     2     50:CC:F8:E4:22:E2     2014-10-13 12:36:02",
                         "10001     ef2da82d4c8b49c44199655dc14f39f6     4.2.1     HUAWEI G610-U00     HUAWEI     2     70:72:3c:73:8b:22     2014-10-13 12:36:35"
               };
          }
          @Override
          public void nextTuple() {
               Utils.sleep(1000);
               DateFormat df = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");
               Date d = new Date(System.currentTimeMillis());
               String minute = df.format(d);
               String record = records[rand.nextInt(records.length)];
               LOG.info("EMIT[spout -> hdfs] " + minute + " : " + record);
               collector.emit(new Values(minute, record));
          }
          @Override
          public void declareOutputFields(OutputFieldsDeclarer declarer) {
               declarer.declare(new Fields("minute", "record"));         
          }
     }
     public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException {
          // use "|" instead of "," for field delimiter
          RecordFormat format = new DelimitedRecordFormat()
                  .withFieldDelimiter(" : ");
          // sync the filesystem after every 1k tuples
          SyncPolicy syncPolicy = new CountSyncPolicy(1000);
          // rotate files 
          FileRotationPolicy rotationPolicy = new TimedRotationPolicy(1.0f, TimeUnit.MINUTES);
          FileNameFormat fileNameFormat = new DefaultFileNameFormat()
                  .withPath("/storm/").withPrefix("app_").withExtension(".log");
          HdfsBolt hdfsBolt = new HdfsBolt()
                  .withFsUrl("hdfs://h1:8020")
                  .withFileNameFormat(fileNameFormat)
                  .withRecordFormat(format)
                  .withRotationPolicy(rotationPolicy)
                  .withSyncPolicy(syncPolicy);
          TopologyBuilder builder = new TopologyBuilder();
          builder.setSpout("event-spout", new EventSpout(), 3);
          builder.setBolt("hdfs-bolt", hdfsBolt, 2).fieldsGrouping("event-spout", new Fields("minute"));
          Config conf = new Config();
          String name = StormToHDFSTopology.class.getSimpleName();
          if (args != null && args.length > 0) {
               conf.put(Config.NIMBUS_HOST, args[0]);
               conf.setNumWorkers(3);
               StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
          } else {
               conf.setMaxTaskParallelism(3);
               LocalCluster cluster = new LocalCluster();
               cluster.submitTopology(name, conf, builder.createTopology());
               Thread.sleep(60000);
               cluster.shutdown();
          }
     }
}
ログイン後にコピー

上面的处理逻辑,可以对HdfsBolt进行更加详细的配置,如FileNameFormat、SyncPolicy、FileRotationPolicy(可以设置在满足什么条件下,切出一个新的日志,如可以指定多长时间切出一个新的日志文件,可以指定一个日志文件大小达到设置值后,再写一个新日志文件),更多设置可以参考storm-hdfs,。
上面代码在打包的时候,需要注意,使用storm-starter自带的Maven打包配置,可能在将Topology部署运行的时候,会报错,可以使用maven-shade-plugin这个插件,如下配置所示:

               <plugin>
                   <groupid>org.apache.maven.plugins</groupid>
                   <artifactid>maven-shade-plugin</artifactid>
                   <version>1.4</version>
                   <configuration>
                       <createdependencyreducedpom>true</createdependencyreducedpom>
                   </configuration>
                   <executions>
                       <execution>
                           <phase>package</phase>
                           <goals>
                               <goal>shade</goal>
                           </goals>
                           <configuration>
                               <transformers>
                                   <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"></transformer>
                                   <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                       <mainclass></mainclass>
                                   </transformer>
                               </transformers>
                           </configuration>
                       </execution>
                   </executions>
               </plugin>
ログイン後にコピー

整合Kafka+Storm+HDFS

上面分别对整合Kafka+Storm和Storm+HDFS做了实践,可以将后者的Spout改成前者的Spout,从Kafka中消费消息,在Storm中可以做简单处理,然后将数据写入HDFS,最后可以在Hadoop平台上对数据进行离线分析处理。下面,写了一个简单的例子,从Kafka消费消息,然后经由Storm处理,写入到HDFS存储,代码如下所示:

package org.shirdrn.storm.examples;
import java.util.Arrays;
import java.util.Map;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.storm.hdfs.bolt.HdfsBolt;
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat;
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat;
import org.apache.storm.hdfs.bolt.format.FileNameFormat;
import org.apache.storm.hdfs.bolt.format.RecordFormat;
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit;
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy;
import org.apache.storm.hdfs.bolt.sync.SyncPolicy;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class DistributeWordTopology {
     public static class KafkaWordToUpperCase extends BaseRichBolt {
          private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase.class);
          private static final long serialVersionUID = -5207232012035109026L;
          private OutputCollector collector;
          @Override
          public void prepare(Map stormConf, TopologyContext context,
                    OutputCollector collector) {
               this.collector = collector;              
          }
          @Override
          public void execute(Tuple input) {
               String line = input.getString(0).trim();
               LOG.info("RECV[kafka -> splitter] " + line);
               if(!line.isEmpty()) {
                    String upperLine = line.toUpperCase();
                    LOG.info("EMIT[splitter -> counter] " + upperLine);
                    collector.emit(input, new Values(upperLine, upperLine.length()));
               }
               collector.ack(input);
          }
          @Override
          public void declareOutputFields(OutputFieldsDeclarer declarer) {
               declarer.declare(new Fields("line", "len"));         
          }
     }
     public static class RealtimeBolt extends BaseRichBolt {
          private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase.class);
          private static final long serialVersionUID = -4115132557403913367L;
          private OutputCollector collector;
          @Override
          public void prepare(Map stormConf, TopologyContext context,
                    OutputCollector collector) {
               this.collector = collector;              
          }
          @Override
          public void execute(Tuple input) {
               String line = input.getString(0).trim();
               LOG.info("REALTIME: " + line);
               collector.ack(input);
          }
          @Override
          public void declareOutputFields(OutputFieldsDeclarer declarer) {
          }
     }
     public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException {
          // Configure Kafka
          String zks = "h1:2181,h2:2181,h3:2181";
          String topic = "my-replicated-topic5";
          String zkRoot = "/storm"; // default zookeeper root configuration for storm
          String id = "word";
          BrokerHosts brokerHosts = new ZkHosts(zks);
          SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
          spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
          spoutConf.forceFromStart = false;
          spoutConf.zkServers = Arrays.asList(new String[] {"h1", "h2", "h3"});
          spoutConf.zkPort = 2181;
          // Configure HDFS bolt
          RecordFormat format = new DelimitedRecordFormat()
                  .withFieldDelimiter("\t"); // use "\t" instead of "," for field delimiter
          SyncPolicy syncPolicy = new CountSyncPolicy(1000); // sync the filesystem after every 1k tuples
          FileRotationPolicy rotationPolicy = new TimedRotationPolicy(1.0f, TimeUnit.MINUTES); // rotate files
          FileNameFormat fileNameFormat = new DefaultFileNameFormat()
                  .withPath("/storm/").withPrefix("app_").withExtension(".log"); // set file name format
          HdfsBolt hdfsBolt = new HdfsBolt()
                  .withFsUrl("hdfs://h1:8020")
                  .withFileNameFormat(fileNameFormat)
                  .withRecordFormat(format)
                  .withRotationPolicy(rotationPolicy)
                  .withSyncPolicy(syncPolicy);
          // configure & build topology
          TopologyBuilder builder = new TopologyBuilder();
          builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5);
          builder.setBolt("to-upper", new KafkaWordToUpperCase(), 3).shuffleGrouping("kafka-reader");
          builder.setBolt("hdfs-bolt", hdfsBolt, 2).shuffleGrouping("to-upper");
          builder.setBolt("realtime", new RealtimeBolt(), 2).shuffleGrouping("to-upper");
          // submit topology
          Config conf = new Config();
          String name = DistributeWordTopology.class.getSimpleName();
          if (args != null && args.length > 0) {
               String nimbus = args[0];
               conf.put(Config.NIMBUS_HOST, nimbus);
               conf.setNumWorkers(3);
               StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
          } else {
               conf.setMaxTaskParallelism(3);
               LocalCluster cluster = new LocalCluster();
               cluster.submitTopology(name, conf, builder.createTopology());
               Thread.sleep(60000);
               cluster.shutdown();
          }
     }
}
ログイン後にコピー

上面代码中,名称为to-upper的Bolt将接收到的字符串行转换成大写以后,会将处理过的数据向后面的hdfs-bolt、realtime这两个Bolt各发一份拷贝,然后由这两个Bolt分别根据实际需要(实时/离线)单独处理。
打包后,在Storm集群上部署并运行这个Topology:

bin/storm jar ~/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.DistributeWordTopology h1
ログイン後にコピー

可以通过Storm UI查看Topology运行情况,可以查看HDFS上生成的数据。

参考链接

  • http://kafka.apache.org/
  • http://kafka.apache.org/documentation.html
  • https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example
  • http://storm.apache.org/
  • http://storm.apache.org/documentation/Tutorial.html
  • http://storm.apache.org/documentation/FAQ.html
  • https://github.com/ptgoetz/storm-hdfs
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Outlook がカレンダーにイベントを自動的に追加しないようにする方法 Outlook がカレンダーにイベントを自動的に追加しないようにする方法 Feb 26, 2024 am 09:49 AM

電子メール マネージャー アプリケーションとして、Microsoft Outlook を使用すると、イベントや予定をスケジュールできます。 Outlook アプリケーションでこれらのアクティビティ (イベントとも呼ばれます) を作成、管理、追跡するためのツールを提供することで、組織的な状態を維持できるようになります。ただし、Outlook の予定表に不要なイベントが追加される場合があり、ユーザーが混乱したり、予定表にスパムが送信されたりすることがあります。この記事では、Outlook が予定表にイベントを自動的に追加しないようにするために役立つさまざまなシナリオと手順を説明します。 Outlook イベント – 簡単な概要 Outlook イベントには複数の目的があり、次のような多くの便利な機能があります。 カレンダーの統合: Outlook 内

Dreamweaver CMS ステーションのグループ練習の共有 Dreamweaver CMS ステーションのグループ練習の共有 Mar 18, 2024 am 10:18 AM

Dream Weaver CMS Station グループ実践共有 近年、インターネットの急速な発展に伴い、Webサイト構築の重要性がますます高まっています。複数の Web サイトを構築する場合、サイト グループ テクノロジは非常に効果的な方法となっています。数多くの Web サイト構築ツールの中でも、Dreamweaver CMS は、その柔軟性と使いやすさにより、多くの Web サイト愛好家にとって最初の選択肢となっています。この記事では、Dreamweaver CMS ステーション グループに関するいくつかの実践的な経験と、いくつかの具体的なコード例を共有し、ステーション グループ テクノロジを研究している読者に何らかの助けとなることを願っています。 1. Dreamweaver CMS ステーション グループとは何ですか?ドリームウィーバーCMS

PHP コーディングの実践: Goto ステートメントの代替手段の拒否 PHP コーディングの実践: Goto ステートメントの代替手段の拒否 Mar 28, 2024 pm 09:24 PM

PHP コーディングの実践: Goto ステートメントの代替手段の使用の拒否 近年、プログラミング言語の継続的な更新と反復により、プログラマーはコーディング仕様とベスト プラクティスにより多くの注意を払い始めています。 PHP プログラミングでは、制御フロー ステートメントとして goto ステートメントが長い間存在していましたが、実際のアプリケーションではコードの可読性と保守性の低下につながることがよくあります。この記事では、開発者が goto ステートメントの使用を拒否し、コードの品質を向上させるのに役立ついくつかの代替案を紹介します。 1. なぜ goto ステートメントの使用を拒否するのですか?まず、その理由を考えてみましょう

Struts フレームワークの原則と実践についての深い議論 Struts フレームワークの原則と実践についての深い議論 Feb 18, 2024 pm 06:10 PM

Struts フレームワークの原理分析と実践的な調査 JavaWeb 開発で一般的に使用される MVC フレームワークとして、Struts フレームワークは優れた設計パターンとスケーラビリティを備えており、エンタープライズ レベルのアプリケーション開発で広く使用されています。この記事では、Struts フレームワークの原理を分析し、読者がフレームワークをよりよく理解して適用できるように、実際のコード例を使用してそれを検討します。 1. Struts フレームワークの原理の分析 1. MVC アーキテクチャ Struts フレームワークは MVC (Model-View-Con) に基づいています。

C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 Nov 27, 2023 pm 01:11 PM

C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 はじめに: C++ は厳密に型指定された言語であり、他の言語のようにクラス型情報を取得するためのリフレクション メカニズムを直接提供しません。ただし、いくつかのトリックと技術的手段を使えば、同様のリフレクション関数を C++ でも実現できます。この記事では、テンプレートのメタプログラミングとマクロ定義を活用して、柔軟なランタイム型情報を実現する方法について説明します。 1. 反映メカニズムとは何ですか?リフレクション メカニズムとは、クラス名、メンバー関数、メンバー変数、その他の属性など、実行時にクラスの型情報を取得することを指します。

Golang を使用したトラフィック管理のベスト プラクティス Golang を使用したトラフィック管理のベスト プラクティス Mar 07, 2024 am 08:27 AM

Golang は、Web サービスやアプリケーションの構築に広く使用されている強力で効率的なプログラミング言語です。ネットワーク サービスでは、トラフィック管理は重要な部分であり、ネットワーク上のデータ送信を制御および最適化し、サービスの安定性とパフォーマンスを確保するのに役立ちます。この記事では、Golang を使用したトラフィック管理のベスト プラクティスを紹介し、具体的なコード例を示します。 1. 基本的なトラフィック管理に Golang の net パッケージを使用する Golang の net パッケージは、ネットワーク データを処理する方法を提供します。

PyCharm を使用したリモート開発の実践的なガイド PyCharm を使用したリモート開発の実践的なガイド Feb 25, 2024 pm 07:18 PM

リモート開発に PyCharm を使用することは、開発者がローカル環境のリモート サーバーでコードを簡単に編集、デバッグ、実行できるようにする効率的な方法です。この記事では、リモート開発の実践に PyCharm を使用する方法を紹介し、それを具体的なコード例と組み合わせて、読者がこのテクノロジーをより深く理解し、適用できるようにします。 PyCharm とはPyCharm は、JetBrains によって開発された Python 統合開発環境 (IDE) であり、役立つ豊富な機能とツールを提供します。

C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 Nov 27, 2023 pm 01:11 PM

C++ リフレクション メカニズムの実践: 柔軟なランタイム型情報の実装 はじめに: C++ は厳密に型指定された言語であり、他の言語のようにクラス型情報を取得するためのリフレクション メカニズムを直接提供しません。ただし、いくつかのトリックと技術的手段を使えば、同様のリフレクション関数を C++ でも実現できます。この記事では、テンプレートのメタプログラミングとマクロ定義を活用して、柔軟なランタイム型情報を実現する方法について説明します。 1. 反映メカニズムとは何ですか?リフレクション メカニズムとは、クラス名、メンバー関数、メンバー変数、その他の属性など、実行時にクラスの型情報を取得することを指します。

See all articles