ホームページ データベース mysql チュートリアル 基于12c in-memory新特性的SQL优化比拼

基于12c in-memory新特性的SQL优化比拼

Jun 07, 2016 pm 04:40 PM
sql 最適化 に基づく

在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!

在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!

该次SQL优化比拼的?原帖地址http://t.cn/RzURLTJ

OKAY 我们来优化一下, 既然索引,物化视图等传统技术无法使用,我们只能使用使用一些oracle的大数据处理技术来提高性能
首先创建表 scripts 可以查看 xxxxxxxx 
这里提一下, 在创建表的时候使用pctfree 0 来适当的降低了逻辑读。
创建完毕
COUNT(*)||'TIME_ROWS'
58432 time_rows
29402976 sales_rows
1776000 customers_rows
160 channles_rows
创建完后 跑了一下 
no tuning
172706 consistent gets
Elapsed: 00:00:22.11
oooooopss~ 22秒 看来需要优化
开始使用 in-memory 组件 来优化
SQL> select * from v$version;
BANNER 
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
SQL> show parameter inmemory
NAME TYPE VALUE
------------------------------------ --------------------------------- ------------------------------
inmemory_clause_default string
inmemory_force string DEFAULT
inmemory_max_populate_servers integer 7
inmemory_query string ENABLE
inmemory_size big integer 16G
inmemory_trickle_repopulate_servers_ integer 1
percent
optimizer_inmemory_aware boolean TRUE
如果内存有限 可以适当的只存放 需要的 列来降低使用memory
alter table SHOUG.times inmemory;
alter table SHOUG.sales inmemory;
alter table shoug.sales no inmemory(PROD_ID,PROMO_ID,QUANTITY_SOLD);
alter table shoug.customers inmemory;
alter table SHOUG.channels inmemory;
Statistics
41 recursive calls
17 db block gets
54 consistent gets
2 physical reads
1188 redo size
1584 bytes sent via SQLNet to client
562 bytes received via SQLNet from client
3 SQL*Net roundtrips to/from client
5 sorts (memory)
0 sorts (disk)
24 rows processed
Elapsed: 00:00:19.70
可以看到 物理读几乎已经很弱了, 但是速度还是不快 
优化CPU使用, 可以看到 inmemory 使用后 cpu 使用率达到了100% 但是, 可以看到等待全落在了 单颗 cpu上
所以根据数据量的大小, 来设置并行度
conn shoug/oracle
alter table shoug.sales parallel 8;
alter table shoug.times parallel 1;
alter table shoug.customers parallel 8;
alter table shoug.channel parallel 4;
select table_name,degree from user_tables;
set timing on
SELECT /* use inmemory / /+parallel (shoug.customers 8)*/ c.cust_city,
t.calendar_quarter_desc,
SUM(s.amount_sold) sales_amount
FROM SHOUG.sales s, SHOUG.times t, SHOUG.customers c
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND c.cust_state_province = 'FL'
AND t.calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12')
AND s.time_id IN
(SELECT time_id
FROM SHOUG.times
WHERE calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12'))
AND s.cust_id IN
(SELECT cust_id FROM SHOUG.customers WHERE cust_state_province = 'FL')
AND s.channel_id IN
(SELECT channel_id
FROM SHOUG.channels
WHERE channel_desc = 'Direct Sales')
GROUP BY c.cust_city, t.calendar_quarter_desc;
24 rows selected.
Elapsed: 00:00:01.37
Statistics
203 recursive calls
0 db block gets
254 consistent gets
0 physical reads
0 redo size
1574 bytes sent via SQLNet to client
562 bytes received via SQLNet from client
3 SQL*Net roundtrips to/from client
0 sorts (memory)
[root@db ~]# top
top - 23:51:34 up 6 days, 18:18, 6 users, load average: 0.65, 0.17, 0.15
Tasks: 391 total, 3 running, 387 sleeping, 0 stopped, 1 zombie
Cpu0 : 23.3%us, 0.0%sy, 0.0%ni, 76.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu2 : 23.7%us, 0.3%sy, 0.0%ni, 76.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu3 : 22.3%us, 0.0%sy, 0.0%ni, 77.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 54.8%us, 0.7%sy, 0.0%ni, 44.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu5 : 22.1%us, 0.0%sy, 0.0%ni, 77.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu6 : 24.3%us, 0.0%sy, 0.0%ni, 75.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 32882416k total, 32061328k used, 821088k free, 13416k buffers
Swap: 8388600k total, 52k used, 8388548k free, 30221056k cached
可以看到cpu使用率达到了30% 以上, 并且, 已经没有内存排序
PS: 恭喜 oracle 在12.1.0.2 版本内 以inmemory 列存储的方式 推出了 vector计算方式, 打破了actian vector db 在大数据市场独领风骚的格局。
ログイン後にコピー

Related posts:

  1. COLLABORATE 14 – SHOUG FORUM 上海ORACLE用户组2014年高峰论坛报名
  2. Oracle OLTP表压缩技术
  3. 2014年3月21日晚SHOUG上海ORACLE用户组首次线下活动
  4. SHOUG User Group Young Expert Program
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Hibernate フレームワークにおける HQL と SQL の違いは何ですか? Hibernate フレームワークにおける HQL と SQL の違いは何ですか? Apr 17, 2024 pm 02:57 PM

HQL と SQL は Hibernate フレームワークで比較されます。HQL (1. オブジェクト指向構文、2. データベースに依存しないクエリ、3. タイプ セーフティ)、SQL はデータベースを直接操作します (1. データベースに依存しない標準、2. 複雑な実行可能ファイル)。クエリとデータ操作)。

C++ プログラムの最適化: 時間の複雑さを軽減する手法 C++ プログラムの最適化: 時間の複雑さを軽減する手法 Jun 01, 2024 am 11:19 AM

時間計算量は、入力のサイズに対するアルゴリズムの実行時間を測定します。 C++ プログラムの時間の複雑さを軽減するためのヒントには、適切なコンテナー (ベクター、リストなど) を選択して、データのストレージと管理を最適化することが含まれます。クイックソートなどの効率的なアルゴリズムを利用して計算時間を短縮します。複数の操作を排除して二重カウントを削減します。条件分岐を使用して、不必要な計算を回避します。二分探索などのより高速なアルゴリズムを使用して線形探索を最適化します。

MySQL 接続数がデータベースのパフォーマンスに与える影響の分析 MySQL 接続数がデータベースのパフォーマンスに与える影響の分析 Mar 16, 2024 am 10:09 AM

MySQL 接続数がデータベースのパフォーマンスに与える影響の分析 インターネット アプリケーションの継続的な開発に伴い、データベースはアプリケーション システムをサポートする重要なデータ ストレージおよび管理ツールになりました。データベース システムにおいて、接続数はデータベース システムのパフォーマンスと安定性に直接関係する重要な概念です。この記事では、MySQL データベースの観点から開始し、データベースのパフォーマンスに対する接続数の影響を調査し、特定のコード例を通じて分析します。 1. 接続数はどれくらいですか?接続数とは、データベース システムが同時にサポートするクライアント接続の数を指し、管理することもできます。

WIN7システムのスタートアップ項目を最適化する方法 WIN7システムのスタートアップ項目を最適化する方法 Mar 26, 2024 pm 06:20 PM

1. デスクトップでキーの組み合わせ (win キー + R) を押してファイル名を指定して実行ウィンドウを開き、[regedit] と入力して Enter キーを押して確定します。 2. レジストリ エディターを開いた後、[HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer] をクリックして展開し、ディレクトリに Serialize 項目があるかどうかを確認します。ない場合は、エクスプローラーを右クリックして新しい項目を作成し、Serialize という名前を付けます。 3. 次に、「シリアル化」をクリックし、右側のペインの空白スペースを右クリックして、新しい DWORD (32) ビット値を作成し、「Star」という名前を付けます。

Vivox100s のパラメーター構成が明らかに: プロセッサーのパフォーマンスを最適化するには? Vivox100s のパラメーター構成が明らかに: プロセッサーのパフォーマンスを最適化するには? Mar 24, 2024 am 10:27 AM

Vivox100s のパラメーター構成が明らかに: プロセッサーのパフォーマンスを最適化するには?テクノロジーが急速に発展する今日、スマートフォンは私たちの日常生活に欠かせないものとなっています。スマートフォンの重要な部分であるプロセッサのパフォーマンスの最適化は、携帯電話のユーザー エクスペリエンスに直接関係します。注目度の高いスマートフォンとして、Vivox100s のパラメータ構成は多くの注目を集めており、特にプロセッサー性能の最適化はユーザーからの注目を集めています。プロセッサは携帯電話の「頭脳」として、携帯電話の動作速度に直接影響します。

PHP 関数の非効率性を解決するにはどのような方法がありますか? PHP 関数の非効率性を解決するにはどのような方法がありますか? May 02, 2024 pm 01:48 PM

PHP 関数の効率を最適化する 5 つの方法: 変数の不必要なコピーを避ける。参照を使用して変数のコピーを回避します。繰り返しの関数呼び出しを避けてください。単純な関数をインライン化します。配列を使用したループの最適化。

「黒神話:悟空」Xbox版は「メモリリーク」により遅延、PS5版は最適化中 「黒神話:悟空」Xbox版は「メモリリーク」により遅延、PS5版は最適化中 Aug 27, 2024 pm 03:38 PM

最近、「Black Myth: Wukong」は世界中で大きな注目を集めており、各プラットフォームでの同時オンライン人口は過去最高に達しており、このゲームは複数のプラットフォームで大きな商業的成功を収めています。 『Black Myth: Wukong』のXbox版は延期 『Black Myth: Wukong』はPCとPS5プラットフォームでリリースされているが、Xbox版については明確な情報はない。 『Black Myth: Wukong』がXboxプラットフォームで発売されることを関係者が認めたことが分かりました。ただし、具体的な発売日はまだ発表されていない。 Xbox 版の遅延は技術的な問題によるものであると最近報告されました。関連ブロガーによると、同氏はGamescom期間中の開発者や「Xbox関係者」とのやり取りから、Xbox版「Black Myth: Wukong」が存在することを知ったという。

ハッシュ テーブル ベースのデータ構造により、PHP 配列の論理積と和集合の計算が最適化されます。 ハッシュ テーブル ベースのデータ構造により、PHP 配列の論理積と和集合の計算が最適化されます。 May 02, 2024 pm 12:06 PM

ハッシュ テーブルを使用すると、PHP 配列の交差と和集合の計算を最適化し、時間の複雑さを O(n*m) から O(n+m) に減らすことができます。 具体的な手順は次のとおりです。 ハッシュ テーブルを使用して要素をマップします。最初の配列をブール値に変換すると、2 番目の配列の要素が存在するかどうかがすぐにわかり、交差計算の効率が向上します。ハッシュ テーブルを使用して最初の配列の要素を既存としてマークし、次に 2 番目の配列の要素を 1 つずつ追加し、既存の要素を無視して共用体計算の効率を向上させます。

See all articles