对单表亿级数据的简单测试
本次对mysql做了单表亿级数据量的压测。 表的关系简单,只有两个int字段,user_id和company_id,且都增加了索引。 通过python脚本,随机向同一个表随机插入100W、500W、1000W-1E数据,并且记录了每次插入数据所耗时间。 先来看下写入数据的情况吧: python脚
本次对mysql做了单表亿级数据量的压测。
表的关系简单,只有两个int字段,user_id和company_id,且都增加了索引。
通过python脚本,随机向同一个表随机插入100W、500W、1000W-1E数据,并且记录了每次插入数据所耗时间。
先来看下写入数据的情况吧:
python脚本空转:
空转100W:0.14s
空转1000W:1.74s
单次插入1000W条数据:295.11s
1000W基础上再插入1000W,轮询,直到写入1E数据,记录每次插入所耗的时间。
可以看到,随着数据量的不断增大,每次插入1000W条数据的时间还是比较稳定,上下浮动不大。
我们最终关心的是单表乙级数据量下,查询速度能有多快。
下面是用python客户端脚本模拟对1E条数据进行随机查询,随机用的是python的随机函数;机器资源有限,开发机是公用的,
所以也没太敢占用太大资源来做压测,并发用的Python的线程模块。
本次查询测试采用三种方法:
1、单进程对数据库执行随机查询1000次操作,执行100次,记录每次时间
2、并发1000、2000线程对数据库进行随机查询1000次操作,记录每次时间
3、用mysql官方软件mysqlslap 对数据库进行操作
第一种:
单次查询1000次的结果,跑100次,发现时间浮动还是比较大,这可能跟插入的数据散列情况有关,
user_id相同的数据还是有不少,20-100之间,线上业务出现这种数据的情况不大,所以,这些数据不影响最终结果。
第二种:并发1000线程对数据库进行随机1000次查询,
1000线程:最慢时间8s,处理能力 125/s ;
2000线程:最慢时间10s,处理能力 100/s;
第三种:mysqlslap进行测试
开启2000个线程,执行SELECT * FROM user_company_test_5000 WHERE user_id=7432查询
平均处理时间8.76s,每秒能处理229个查询。
用官方的mysqlslap进行测试,跟python脚本的测试结果偏差较大,
猜测原因有两个:
1:mysqlslap 直接采用socket对Mysql进行连接,所以它除了 mysql处理时间和网络请求时间没有其他影响结果的操作
2:mysqlslap只能指定sql,没有办法随机查询数据,而测试表里面的数据分散不均匀,这也是一个原因。
mysqlslap的数据只能视为最好情况,但第二个python脚本则更接近生产环境,1000次查询数据也是随机查询,
所以第二种能作为生产环境的依据。
再来看看批量查询,IN 语句最多50个值
好吧,我只开了200个线程,最慢时间93s,最快时间46s,简直可以用惨不忍睹来讲。。如果是批量查询,
那就拆成多条语句来查吧。如果用IN ,必然会影响服务。
结论:
跟dba沟通过,理论上每秒能够支持5000次的查询量是比较正常的,但我用mysqlslap对单表100W的数据量进行了
测试,2000个client 每秒处理能力也只有700左右,
从第二种数据上看,当单机client达到2000时,每秒还能处理100次左右的查询,还是不错的。
原文出处:http://www.imsiren.com/archives/995
ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

データ統合の簡素化:AmazonrdsmysqlとRedshiftのゼロETL統合効率的なデータ統合は、データ駆動型組織の中心にあります。従来のETL(抽出、変換、負荷)プロセスは、特にデータベース(AmazonrdsmysQlなど)をデータウェアハウス(Redshiftなど)と統合する場合、複雑で時間がかかります。ただし、AWSは、この状況を完全に変えたゼロETL統合ソリューションを提供し、RDSMYSQLからRedshiftへのデータ移行のための簡略化されたほぼリアルタイムソリューションを提供します。この記事では、RDSMysQl Zero ETLのRedshiftとの統合に飛び込み、それがどのように機能するか、それがデータエンジニアと開発者にもたらす利点を説明します。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

1.正しいインデックスを使用して、データの量を削減してデータ検索をスピードアップしました。テーブルの列を複数回検索する場合は、その列のインデックスを作成します。あなたまたはあなたのアプリが基準に従って複数の列からのデータが必要な場合、複合インデックス2を作成します2。選択した列のみを避けます。必要な列のすべてを選択すると、より多くのサーバーメモリを使用する場合にのみサーバーが遅くなり、たとえばテーブルにはcreated_atやupdated_atやupdated_atなどの列が含まれます。

次のコマンドでmysqlデータベースを表示します。サーバーに接続します:mysql -u username -pパスワードrun showデータベース。すべての既存のデータベースを取得するコマンド[データベース]を選択します。データベース名を使用します。テーブルを表示:表を表示します。テーブル構造を表示:テーブル名を説明してください。データを表示:[テーブル名]から[ *]を選択します。

データベース酸属性の詳細な説明酸属性は、データベーストランザクションの信頼性と一貫性を確保するための一連のルールです。データベースシステムがトランザクションを処理する方法を定義し、システムのクラッシュ、停電、または複数のユーザーの同時アクセスの場合でも、データの整合性と精度を確保します。酸属性の概要原子性:トランザクションは不可分な単位と見なされます。どの部分も失敗し、トランザクション全体がロールバックされ、データベースは変更を保持しません。たとえば、銀行の譲渡が1つのアカウントから控除されているが別のアカウントに増加しない場合、操作全体が取り消されます。 TRANSACTION; updateaccountssetbalance = balance-100wh

MySQLのユーザー名とパスワードを入力するには:1。ユーザー名とパスワードを決定します。 2。データベースに接続します。 3.ユーザー名とパスワードを使用して、クエリとコマンドを実行します。
