Percona Thread Pool性能基准测试
MySQL从5.5.16开始,在MySQL的商业化版本中将Thread Pool作为plugin提供官方功能支持。后来MariaDB也实现了这一功能,Percona也跟进实现了。从这几天对Percona 5.6.16版本做了下thread pool对比测试,试图找到较为合适的配置参数。 下面是几个测试模式对比:
MySQL从5.5.16开始,在MySQL的商业化版本中将Thread Pool作为plugin提供官方功能支持。后来MariaDB也实现了这一功能,Percona也跟进实现了。从这几天对Percona 5.6.16版本做了下thread pool对比测试,试图找到较为合适的配置参数。
下面是几个测试模式对比:
模式 配置参数
Percona 5.6.16-nothp 未开启 thread pool 模式
CASE0-thp(128)-oversub(16)-max(2048) thread_handling = pool-of-threads
thread_pool_size = 128
thread_pool_oversubscribe = 16
thread_pool_max_threads = 2048
CASE1-thp(default) thread_handling = pool-of-threads
其他默认设置
CASE2-thp(default)-oversub(10) thread_handling = pool-of-threads
thread_pool_oversubscribe = 10
其他默认设置
CASE3-thp(default)-oversub(10)-max(10000) thread_handling = pool-of-threads
thread_pool_oversubscribe = 10
thread_pool_max_threads = 100000
其他默认设置
CASE4-thp(default)-oversub(16) thread_handling = pool-of-threads
thread_pool_oversubscribe = 16
其他默认设置
CASE5-thp(128)-oversub(16)-max(100000) thread_handling = pool-of-threads
thread_pool_size = 128
thread_pool_oversubscribe = 16
thread_pool_max_threads = 100000
仍然采用tpcc-mysql这个测试工具,基准值:
测试Warehouse数: 100
warmup time: 60s
run time: 1200s
并发线程数: 64 ~ 1920
测试环境信息:
测试机 DELL PE R710
CPU E5620 @ 2.40GHz(4 core, 8 threads, L3 Cache 12 MB) * 2
内存 32G(4G * 8)
RAID卡 PERC H700 Integrated, 512MB, BBU, 12.10.1-0001
系统 Red Hat Enterprise Linux Server release 6.4 (Santiago)
内核 2.6.32-358.el6.x86_64 #1 SMP
raid级别 raid 0
文件系统 xfs
硬盘 SSD: Intel 520系列SSD, 800G * 1
Percona版本号:5.6.16-64.2-rel64.2-log Percona Server with XtraDB (GPL), Release rel64.2, Revision 569,Percona相关的关键配置有:
innodb_buffer_pool_size = 26G
innodb_flush_log_at_trx_commit = 1
测试脚本可参考:MySQL压力测试经验
测试结果见下:
针对这个测试结果,我们可以得到一些结论:
1、通常地,只需要开启 pool-of-threads 模式就可以;
2、可以根据实际压力情况,适当调整 thread_pool_oversubscribe 选项以提升 TPS,这个选项值设置范围一般在 3~20;
3、thread-pool-size默认值是逻辑CPU个数,最大值是 128,不建议调整或显式设置,如果显式设定 thread-pool-size 的值,可能会带来反效果;
4、thread_pool_max_threads 默认值是 100000,强烈不建议修改。
综上,对于Thread Pool,我们一般建议设置下面2个选项就足够了:
thread_handling = pool-of-threads
thread_pool_oversubscribe = 10 #这个值建议在3~20间,不清楚的话,无需设置
备注:启用Thread Pool后,想要终止某个查询的话,要这么写KILL QUERY connection_id,,而不是写成 KILLconnection_id,否则就会导致整个连接被KILL。
如果还有什么问题,欢迎加入我的QQ群(272675472)讨论。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









新作ファンタジー妖精MMORPG『朱仙2』の「武威試験」が4月23日より開始されます。原作から数千年後の朱仙大陸で、どのような新たな妖精冒険物語が繰り広げられるのでしょうか?六界の不滅の世界、フルタイムの不滅のアカデミー、自由な不滅の生活、そして不滅の世界のあらゆる種類の楽しみが、不滅の友人たちが直接探索するのを待っています! 「Wuwei Test」の事前ダウンロードが開始されました。Fairy friends は公式 Web サイトにアクセスしてダウンロードできます。サーバーが起動する前に、アクティベーション コードは事前ダウンロードとインストール後に使用できます。完成されました。 『朱仙2』「不作為試験」開催時間:4月23日10:00~5月6日23:59 小説『朱仙』を原作とした朱仙正統続編『朱仙2』の新たな童話冒険篇原作の世界観をベースにゲーム背景を設定。

Ollama は、Llama2、Mistral、Gemma などのオープンソース モデルをローカルで簡単に実行できるようにする非常に実用的なツールです。この記事では、Ollamaを使ってテキストをベクトル化する方法を紹介します。 Ollama をローカルにインストールしていない場合は、この記事を読んでください。この記事では、nomic-embed-text[2] モデルを使用します。これは、短いコンテキストおよび長いコンテキストのタスクにおいて OpenAI text-embedding-ada-002 および text-embedding-3-small よりも優れたパフォーマンスを発揮するテキスト エンコーダーです。 o が正常にインストールされたら、nomic-embed-text サービスを開始します。

さまざまな Java フレームワークのパフォーマンス比較: REST API リクエスト処理: Vert.x が最高で、リクエスト レートは SpringBoot の 2 倍、Dropwizard の 3 倍です。データベース クエリ: SpringBoot の HibernateORM は Vert.x や Dropwizard の ORM よりも優れています。キャッシュ操作: Vert.x の Hazelcast クライアントは、SpringBoot や Dropwizard のキャッシュ メカニズムよりも優れています。適切なフレームワーク: アプリケーションの要件に応じて選択します。Vert.x は高パフォーマンスの Web サービスに適しており、SpringBoot はデータ集約型のアプリケーションに適しており、Dropwizard はマイクロサービス アーキテクチャに適しています。

PHP の配列キー値の反転メソッドのパフォーマンスを比較すると、array_flip() 関数は、大規模な配列 (100 万要素以上) では for ループよりもパフォーマンスが良く、所要時間が短いことがわかります。キー値を手動で反転する for ループ方式は、比較的長い時間がかかります。

C++ マルチスレッドのパフォーマンスを最適化するための効果的な手法には、リソースの競合を避けるためにスレッドの数を制限することが含まれます。競合を軽減するには、軽量のミューテックス ロックを使用します。ロックの範囲を最適化し、待ち時間を最小限に抑えます。ロックフリーのデータ構造を使用して同時実行性を向上させます。ビジー待機を回避し、イベントを通じてリソースの可用性をスレッドに通知します。

機能テストでは、ブラック ボックス テストとホワイト ボックス テストを通じて機能の機能を検証します。一方、コード カバレッジでは、テスト ケースによってカバーされるコードの部分を測定します。言語 (Python や Java など) が異なれば、テスト フレームワーク、カバレッジ ツール、機能も異なります。実際の事例では、関数テストとカバレッジ評価に Python の Unittest と Coverage、Java の JUnit と JaCoCo を使用する方法を示します。

さまざまな PHP 関数のパフォーマンスは、アプリケーションの効率にとって非常に重要です。パフォーマンスの良い関数には echo や print などがありますが、str_replace、array_merge、file_get_contents などの関数のパフォーマンスは低くなります。たとえば、str_replace 関数は文字列の置換に使用され、中程度のパフォーマンスを発揮しますが、sprintf 関数は文字列の書式設定に使用されます。パフォーマンス分析によると、1 つの例の実行にかかる時間はわずか 0.05 ミリ秒であり、関数が適切に実行されることが証明されています。したがって、関数を賢く使用すると、アプリケーションをより高速かつ効率的に実行できます。

静的関数のパフォーマンスに関する考慮事項は次のとおりです。 コード サイズ: 静的関数にはメンバー変数が含まれないため、通常は小さくなります。メモリ占有: 特定のオブジェクトに属さず、オブジェクト メモリを占有しません。呼び出しオーバーヘッド: 低くなり、オブジェクト ポインターまたは参照を介して呼び出す必要がありません。マルチスレッド セーフ: クラス インスタンスに依存しないため、通常はスレッド セーフです。
