Oracle job + 存储过程 的使用示例
第一部分:下面的步骤完整的演示了job的创建过程:第二部分:job的相关知识:第三部分:实际应用发现:删除jobs的时候必须使用该
导读:
第一部分:下面的步骤完整的演示了job的创建过程:
第二部分:job的相关知识:
第三部分:实际应用
发现:删除jobs的时候必须使用该job的owner来做,sys也不能删别人的job!(先这样理解,,以后再更正。嘿嘿·)
正文:
第一部分:下面的步骤完整的演示了job的创建过程:
1,先创建一张pig表,字段为a日期格式
SQL> create table pig(a date);
Table created
SQL> commit;
Commit complete
2,创建一个存储过程bb作用是往pig表中插入数据
SQL> create or replace procedure bb as
2 begin
3 insert into pig values(sysdate);
4 end;
5 /
Procedure created
3,创建一个job,名称为job2009;作用是每分钟(60×24=1440)执行一次存储过程bb。
SQL> variable job2009 number;
SQL> begin
2 dbms_job.submit(:job2009,'bb;',sysdate,'sysdate+1/1440');
3 end;
4 /
注意:这里系统自动生成job id为41
PL/SQL procedure successfully completed
job2009
---------
41
4,运行job2009
SQL> begin
2 dbms_job.run(:job2009);
3 end;
4 /
PL/SQL procedure successfully completed
job2009
---------
41
5,删除job2009
SQL> begin
2 dbms_job.remove(:job2009);
3 end;
4 /

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。
