Oracle Update执行计划原理解析与优化
当使用update,大多数情况下只有一个子节点,只有当set子句中使用子查询时,它才能有两个以上的节点,如果它只有一个节点的情况下
当update下面有多个节点时,大家可以看到相当于是多个nestedloop(嵌套循环连接(nested loops join)原理),如果你操作的数据量大,则性能可能会有问题,这种场景下,使用merge into(用merge into进行性能优化)优化,,可以把执行计划变为hash join(哈希连接(hash join) 原理),表都只要扫描一次,性能会有提升。
SQL> create table test as select * from dba_objects where rownum 表已创建。
SQL> exec dbms_stats.gather_table_stats(user,'test');
PL/SQL 过程已成功完成。
SQL> alter session set statistics_level=all;
会话已更改。
SQL> update test t1 set owner=(select owner from test t2
where t1.object_id=t2.object_id),
object_name =(select object_name from test t2
where t1.object_id=t2.object_id),
object_type =(select object_type from test t2
where t1.object_id=t2.object_id);
已更新999行。
SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------------
SQL_ID 6d1m5j0qsg875, child number 0
-------------------------------------
update test t1 set owner=(select owner from test t2 where
t1.object_id=t2.object_id), object_name =(select object_name from test
t2 where t1.object_id=t2.object_id), object_type =(select
object_type from test t2 where t1.object_id=t2.object_id)
Plan hash value: 1849821134
-------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------
| 1 | UPDATE | TEST | 1 | | 0 |00:00:00.25 | 46019 |
| 2 | TABLE ACCESS FULL| TEST | 1 | 999 | 999 |00:00:00.01 | 15 |
|* 3 | TABLE ACCESS FULL| TEST | 999 | 1 | 999 |00:00:00.08 | 14985 |
|* 4 | TABLE ACCESS FULL| TEST | 999 | 1 | 999 |00:00:00.08 | 14985 |
|* 5 | TABLE ACCESS FULL| TEST | 999 | 1 | 999 |00:00:00.08 | 14985 |
-------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter("T2"."OBJECT_ID"=:B1)
4 - filter("T2"."OBJECT_ID"=:B1)
5 - filter("T2"."OBJECT_ID"=:B1)
Oracle执行计划 讲解(一)

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。
