用示例说明表数据中出现热块&Latch的场景,并给出解决方案?
引言:Latch争用就是由于多个会话同一时间访问同一个数据块引起的,这也是我们常说的热块。解决方法:把记录打散到多个数据块中,减少多个会话同一时间频繁访问
引言:Latch争用就是由于多个会话同一时间访问同一个数据块引起的,这也是我们常说的热块。解决方法:把记录打散到多个数据块中,网站空间,减少多个会话同一时间频繁访问一个数据块概率,防止由于记录都集中在一个数据块里产生热块现象。下面我们用实验来说明热块是如何产生和解决的。
session:19
LEO1@LEO1>select distinct sid from v$mystat; 大家先了解一下LEO1用户的SID是19
SID
-----------------
19
LEO1@LEO1>create table latch_table1 as select * from dba_objects; 创建latch_table1表
Table created.
LEO1@LEO1>select count(*) from latch_table1; 这个表中有71961条记录
COUNT(*)
----------------
71961
LEO1@LEO1>execute dbms_stats.gather_table_stats('LEO1','latch_table1'); 我们对表做一个全面分析让优化器了解表数据是如何分布的。
PL/SQL proceduresuccessfully completed.
下面我们用dbms_rowid.rowid_block_number 函数来查出一个数据块上有多少条记录
dbms_rowid.rowid_block_number作用:函数返回输入ROWID对应的数据块编号
selectdbms_rowid.rowid_block_number(rowid), count(*) block_sum_rows from latch_table1 group bydbms_rowid.rowid_block_number(rowid) order by block_sum_rows ;
这里显示出每个数据块上有多少条记录,按记录数从大到小排列
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)BLOCK_SUM_ROWS
--------------------------------------------------
234 81
391 81
225 82
259 82
220 83
233 83
279 84
274 85
219 88
275 89
277 89
276 90
278 90
我们看到一个数据块中最多是90行记录
select'LATCH_TABLE1' , block_sum_rows , count(*) con_rows_sum_blocks from
(selectdbms_rowid.rowid_block_number(rowid), count(*) block_sum_rows from latch_table1 group bydbms_rowid.rowid_block_number(rowid) order by block_sum_rows)
group byblock_sum_rows order by con_rows_sum_blocks;
有一致记录数的数据块有多少个,举个例子好理解,上面我们看到276和278块上都用90条记录,现在我们想知道有90条记录的块一共有多少个我们用con_rows_sum_blocks列名表示(一致记录数的数据块总和),香港服务器租用,每个块上的记录数我们用block_sum_rows列名表示。
'LATCH_TABLE BLOCK_SUM_ROWS CON_ROWS_SUM_BLOCKS
-------------------------- ----------------------- -------------- -------------------
LATCH_TABLE1 85 1
LATCH_TABLE1 54 1
LATCH_TABLE1 84 1
LATCH_TABLE1 88 1
LATCH_TABLE1 25 1
LATCH_TABLE1 63 2
LATCH_TABLE1 90 2
LATCH_TABLE1 83 2
LATCH_TABLE1 82 2
LATCH_TABLE1 89 2
LATCH_TABLE1 64 4
LATCH_TABLE1 81 10
LATCH_TABLE1 80 17
LATCH_TABLE1 65 18
LATCH_TABLE1 79 20
LATCH_TABLE1 74 27
LATCH_TABLE1 73 28
LATCH_TABLE1 77 28
LATCH_TABLE1 72 29
LATCH_TABLE1 78 29
LATCH_TABLE1 75 33
LATCH_TABLE1 76 36
LATCH_TABLE1 71 54
LATCH_TABLE1 66 69
LATCH_TABLE1 70 75
LATCH_TABLE1 69 152
LATCH_TABLE1 67 158
LATCH_TABLE1 68 223
28 rows selected.

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

DDREASE は、ハード ドライブ、SSD、RAM ディスク、CD、DVD、USB ストレージ デバイスなどのファイル デバイスまたはブロック デバイスからデータを回復するためのツールです。あるブロック デバイスから別のブロック デバイスにデータをコピーし、破損したデータ ブロックを残して正常なデータ ブロックのみを移動します。 ddreasue は、回復操作中に干渉を必要としないため、完全に自動化された強力な回復ツールです。さらに、ddasue マップ ファイルのおかげでいつでも停止および再開できます。 DDREASE のその他の主要な機能は次のとおりです。 リカバリされたデータは上書きされませんが、反復リカバリの場合にギャップが埋められます。ただし、ツールに明示的に指示されている場合は切り詰めることができます。複数のファイルまたはブロックから単一のファイルにデータを復元します

昨日の面接で、ロングテール関連の質問をしたかと聞かれたので、簡単にまとめてみようと思いました。自動運転のロングテール問題とは、自動運転車におけるエッジケース、つまり発生確率が低い考えられるシナリオを指します。認識されているロングテール問題は、現在、単一車両のインテリジェント自動運転車の運用設計領域を制限している主な理由の 1 つです。自動運転の基礎となるアーキテクチャとほとんどの技術的問題は解決されており、残りの 5% のロングテール問題が徐々に自動運転の開発を制限する鍵となってきています。これらの問題には、さまざまな断片的なシナリオ、極端な状況、予測不可能な人間の行動が含まれます。自動運転におけるエッジ シナリオの「ロング テール」とは、自動運転車 (AV) におけるエッジ ケースを指します。エッジ ケースは、発生確率が低い可能性のあるシナリオです。これらの珍しい出来事

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

マルチモーダル文書理解機能のための新しい SOTA!アリババの mPLUG チームは、最新のオープンソース作品 mPLUG-DocOwl1.5 をリリースしました。これは、高解像度の画像テキスト認識、一般的な文書構造の理解、指示の遵守、外部知識の導入という 4 つの主要な課題に対処するための一連のソリューションを提案しています。さっそく、その効果を見てみましょう。複雑な構造のグラフをワンクリックで認識しMarkdown形式に変換:さまざまなスタイルのグラフが利用可能:より詳細な文字認識や位置決めも簡単に対応:文書理解の詳しい説明も可能:ご存知「文書理解」 「」は現在、大規模な言語モデルの実装にとって重要なシナリオです。市場には文書の読み取りを支援する多くの製品が存在します。その中には、主にテキスト認識に OCR システムを使用し、テキスト処理に LLM と連携する製品もあります。

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。
