MySQL查询优化:连接查询排序浅谈
不知道有没有人碰到过这样恶心的问题:两张表连接查询并limit,SQL效率很高,但是加上order by以后,语句的执行时间变的巨长,效率巨低。下边就来看看这个问题需要如何解决
情况是这么一个情况:现在有两张表,team表和people表,每个people属于一个team,people中有个字段team_id。
下面给出建表语句:
代码如下:
create table t_team
(
id int primary key,
tname varchar(100)
);
create table t_people
(
id int primary key,
pname varchar(100),
team_id int,
foreign key (team_id) references t_team(id)
);
下面我要连接两张表查询出前10个people,按tname排序。
于是,一个SQL语句诞生了:select * from t_people p left join t_team t onp.team_id=t.id order by p.pname limit 10; [语句①]
这个是我第一反应写的SQL,通俗易懂,也是大多数人的第一反应。
然后来测试一下这个语句的执行时间。
首先要准备数据。我用存储过程在t_team表中生成1000条数据,在t_people表中生成100000条数据。(存储过程在本文最后)
执行上面那条SQL语句,执行了好几次,耗时在3秒左右。
再换两个语句对比一下:
1.把order by子句去掉:select * from t_people p left join t_team t on p.team_id=t.id limit10; [语句②]
耗时0.00秒,忽略不计。
2.还是使用order by,但是把连接t_team表去掉:select * from t_people p order by p.pname limit 10; [语句③]
耗时0.15秒左右。
对比发现[语句①]的效率巨低。
为什么效率这么低呢。[语句②]和[语句③]执行都很快,[语句①]不过是二者的结合。如果先执行[语句③]得到排序好的10条people结果后,再连接查询出各个people的team,效率不会这么低。那么只有一个解释:MySQL先执行连接查询,再进行排序。
解决方法:如果想提高效率,就要修改SQL语句,让MySQL先排序取前10条再连接查询。
SQL语句:
select * from (select * from t_people p order by p.pname limit 10) p left join t_team t on p.team_id=t.id limit 10; [语句④]
[语句④]和[语句①]功能一样,虽然有子查询,虽然看起来很别扭,但是效率提高了很多,它的执行时间只要0.16秒左右,比之前的[语句①]提高了20倍。
这两个表的结构很简单,如果遇到复杂的表结构…我在实际开发中就碰到了这样的问题,使用[语句①]的方式耗时80多秒,但使用[语句④]只需1秒以内。
最后给出造数据的存储过程:
代码如下:
CREATE PROCEDURE createdata()
BEGIN
DECLARE i INT;
START TRANSACTION;
SET i=0;
WHILE i INSERT INTO t_team VALUES(i+1,CONCAT('team',i+1));
SET i=i+1;
END WHILE;
SET i=0;
WHILE i INSERT INTO t_people VALUES(i+1,CONCAT('people',i+1),i%1000+1);
SET i=i+1;
END WHILE;
COMMIT;
END
转载自:http://blog.csdn.net/xiao__gui/article/details/8616224

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











ビッグ データ構造の処理スキル: チャンキング: データ セットを分割してチャンクに処理し、メモリ消費を削減します。ジェネレーター: データ セット全体をロードせずにデータ項目を 1 つずつ生成します。無制限のデータ セットに適しています。ストリーミング: ファイルやクエリ結果を 1 行ずつ読み取ります。大きなファイルやリモート データに適しています。外部ストレージ: 非常に大規模なデータ セットの場合は、データをデータベースまたは NoSQL に保存します。

MySQL クエリのパフォーマンスは、検索時間を線形の複雑さから対数の複雑さまで短縮するインデックスを構築することで最適化できます。 PreparedStatement を使用して SQL インジェクションを防止し、クエリのパフォーマンスを向上させます。クエリ結果を制限し、サーバーによって処理されるデータ量を削減します。適切な結合タイプの使用、インデックスの作成、サブクエリの使用の検討など、結合クエリを最適化します。クエリを分析してボトルネックを特定し、キャッシュを使用してデータベースの負荷を軽減し、オーバーヘッドを最小限に抑えます。

PHP で MySQL データベースをバックアップおよび復元するには、次の手順を実行します。 データベースをバックアップします。 mysqldump コマンドを使用して、データベースを SQL ファイルにダンプします。データベースの復元: mysql コマンドを使用して、SQL ファイルからデータベースを復元します。

MySQLテーブルにデータを挿入するにはどうすればよいですか?データベースに接続する: mysqli を使用してデータベースへの接続を確立します。 SQL クエリを準備します。挿入する列と値を指定する INSERT ステートメントを作成します。クエリの実行: query() メソッドを使用して挿入クエリを実行します。成功すると、確認メッセージが出力されます。

MySQL 8.4 (2024 年時点の最新の LTS リリース) で導入された主な変更の 1 つは、「MySQL Native Password」プラグインがデフォルトで有効ではなくなったことです。さらに、MySQL 9.0 ではこのプラグインが完全に削除されています。 この変更は PHP および他のアプリに影響します

PHP で MySQL ストアド プロシージャを使用するには: PDO または MySQLi 拡張機能を使用して、MySQL データベースに接続します。ストアド プロシージャを呼び出すステートメントを準備します。ストアド プロシージャを実行します。結果セットを処理します (ストアド プロシージャが結果を返す場合)。データベース接続を閉じます。

PHP を使用して MySQL テーブルを作成するには、次の手順が必要です。 データベースに接続します。データベースが存在しない場合は作成します。データベースを選択します。テーブルを作成します。クエリを実行します。接続を閉じます。

Oracle データベースと MySQL はどちらもリレーショナル モデルに基づいたデータベースですが、Oracle は互換性、スケーラビリティ、データ型、セキュリティの点で優れており、MySQL は速度と柔軟性に重点を置いており、小規模から中規模のデータ セットに適しています。 ① Oracle は幅広いデータ型を提供し、② 高度なセキュリティ機能を提供し、③ エンタープライズレベルのアプリケーションに適しています。① MySQL は NoSQL データ型をサポートし、② セキュリティ対策が少なく、③ 小規模から中規模のアプリケーションに適しています。
