使用SQL Server数据库嵌套子查询的方法
使用SQL Server数据库嵌套子查询的方法
很多SQL Server程序员对子查询(subqueries)的使用感到困惑,尤其对于嵌套子查询(即子查询中包含一个子查询)。现在,就让我们追本溯源地探究这个问题。有两种子查询类型:标准和相关。标准子查询执行一次,结果反馈给父查询。相关子查询每行执行一次,由父查询找回。在本文中,我将重点讨论嵌套子查询(nested subqueries)(我将在以后介绍相关子查询)。
试想这个问题:你想生成一个卖平垫圈的销售人员列表。你需要的数据分散在四个表格中:人员.联系方式(Person.Contact),人力资源.员工(HumanResources.Employee),销售.销售订单标题(Sales.SalesOrderHeader),销售.销售订单详情(Sales.SalesOrderDetail)。在SQL Server中,你从内压式(outside-in)写程序,但从外压式(inside-out)开始考虑非常有帮助,即可以一次解决需要的一个语句。
如果从内到外写起,可以检查Sales.SalesOrderDetail表格,在LIKE语句中匹配产品数(ProductNumber)值。你将这些行与Sales.SalesOrderHeader表格连接,从中可以获得销售人员IDs(SalesPersonIDs)。然后使用SalesPersonID连接SalesPersonID表格。最后,使用ContactID连接Person.Contact表格。
代码如下:
USE AdventureWorks ;
GO
SELECT DISTINCT c.LastName, c.FirstName
FROM Person.Contact c JOIN HumanResources.Employee e
ON e.ContactID = c.ContactID WHERE EmployeeID IN
(SELECT SalesPersonID
FROM Sales.SalesOrderHeader
WHERE SalesOrderID IN
(SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE ProductID IN
(SELECT ProductID
FROM Production.Product p
WHERE ProductNumber LIKE'FW%')));
GO
这个例子揭示了有关SQL Server的几个绝妙事情。你可以发现,可以用IN()参数替代SELECT 语句。在本例中,有两次应用,因此创建了一个嵌套子查询。
我是标准化(normalization)的发烧友,尽管我不接受其荒谬的长度。由于标准化具有各种查询而增加了复杂性。在这些情况下子查询就显得非常有用,嵌套子查询甚至更加有用。
当你需要的问题分散于很多表格中时,你必须再次将它们拼在一起,这时你可能发现嵌套子程序就很有用。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。
