ホームページ バックエンド開発 Python チュートリアル 用Python实现斐波那契(Fibonacci)函数

用Python实现斐波那契(Fibonacci)函数

Jun 10, 2016 pm 03:05 PM
python

Fibonacci斐波那契数列,很简单,就是一个递归嘛,学任何编程语言可能都会做一下这个。

最近在玩Python,在粗略的看了一下Learning Python和Core Python之后,偶然发现网上有个帖子Python程序员的进化写的很有意思。于是打算仿照一篇,那篇帖子用了十余种方法完成一个阶乘函数,我在这里会用九种不同的风格写出一个Fibonacci函数。

要求很简单,输入n,输出第n个Fibonacci数,n为正整数

下面是这九种不同的风格:

1)第一次写程序的Python程序员:

def fib(n):
  return nth fibonacci number
ログイン後にコピー

说明:
第一次写程序的人往往遵循人类语言的语法而不是编程语言的语法,就拿我一个编程很猛的哥们来说,他写的第一个判断闰年的程序,里面直接是这么写的:如果year是闰年,输出year是闰年,否则year不是闰年。

2)刚学Python不久的的C程序员:

def fib(n):#{
 if n<=2 :
  return 1;
 else:
  return fib(n-1)+fib(n-2);
#}
ログイン後にコピー

说明:
在刚接触Python时,用缩进而非大括号的方式来划分程序块这种方式我是很不适应的,而且每个语句后面没有结束符,所以每次写完一个Python函数之后干的第一件事一般就是一边注释大括号,一边添加漏掉的冒号。

3)懒散的Python程序员:

def fib(n):
  return 1 and n<=2 or fib(n-1)+fib(n-2)
ログイン後にコピー

说明:
看了Learning Python之后,才知道Python没有三元操作符?,不过鉴于Python里bool值比较特殊(有点像C,非零即真,非空即真),再加上Python的逻辑语句也是支持短路求值(Short-Circuit Evaluation)的,这就可以写出一个仿?语句出来。

4)更懒的Python程序员:

 fib=lambda n:1 if n<=2 else fib(n-1)+fib(n-2)
ログイン後にコピー

说明:
lambda关键字我曾在C#和Scheme里面用过,Python里面的lambda比C#里简便,并很像Scheme里的用法,所以很快就适应了。在用Python Shell声明一些小函数时经常用这种写法。

5)刚学完数据结构的Python程序员:

def fib(n):
 x,y=0,1
 while(n):
  x,y,n=y,x+y,n-1
 return x
ログイン後にコピー

说明:
前面的Fibonacci函数都是树形递归的实现,哪怕是学一点算法就应该知道这种递归的低效了。在这里从树形递归改为对应的迭代可以把效率提升不少。
Python的元组赋值特性是我很喜欢的一个东东,这玩意可以把代码简化不少。举个例子,以前的tmp=a;a=b;b=tmp;可以直接用一句a,b=b,a实现,既简洁又明了。

6)正在修SICP课程的Python程序员:

def fib(n):
  def fib_iter(n,x,y):
   if n==0 : return x
   else : return fib_iter(n-1,y,x+y)

  return fib_iter(n,0,1)
ログイン後にコピー

说明:
在这里我使用了Scheme语言中很常见的尾递归(Tail-recursion)写法。Scheme里面没有迭代,但可以用不变量和尾递归来模拟迭代,从而实现相同的效果。不过我还不清楚Python有没有对尾递归做相应的优化,回头查一查。
PS:看过SICP的同学,一眼就能看出,这个程序其实就是SICP第一章里的一个例子。

7)好耍小聪明的Python程序员:

fib=lambda n,x=0,y=1:x if not n else f(n-1,y,x+y)
ログイン後にコピー

说明:
基本的逻辑和上面的例子一样,都是尾递归写法。主要的区别就是利用了Python提供的默认参数和三元操作符,从而把代码简化至一行。至于默认参数,学过C++的同学都知道这玩意,至于C#4.0也引入了这东东。

8)刚修完线性代数的Python程序员:

def fib(n):
 def m1(a,b):
  m=[[],[]]
  m[0].append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m[0].append(a[0][0]*b[0][1]+a[0][1]*b[1][1])
  m[1].append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  m[1].append(a[1][0]*b[1][0]+a[1][1]*b[1][1])
  return m
 def m2(a,b):
  m=[]
  m.append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m.append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  return m
 return m2(reduce(m1,[[[0,1],[1,1]] for i in range(n)]),[[0],[1]])[0]
ログイン後にコピー

说明:
这段代码就不像之前的代码那样清晰了,所以先介绍下原理(需要一点线性代数知识):
首先看一下之前的迭代版本的Fibonacci函数,很容易可以发现存在一个变换:y->x, x+y->y。换一个角度,就是[x,y]->[y,x+y]。
在这里,我声明一个二元向量[x,y]T,它通过一个变换得到[y,x+y]T,可以很容易得到变换矩阵是[[1,0],[1,1]],也就是说:[[1,0],[1,1]]*[x,y]T=[y,x+y]T
令二元矩阵A=[[1,0],[1,1]],二元向量x=[0,1]T,容易知道Ax的结果就是下一个Fibonacci数值,即:
Ax=[fib(1),fib(2)]T
亦有:
Ax=[fib(2),fib(3)]T
………………
以此类推,可以得到:

A&#8319;x=[fib(n),fib(n-1)]T
ログイン後にコピー

也就是说可以通过对二元向量[0,1]T进行n次A变换,从而得到[fib(n),fib(n+1)]T,从而得到fib(n)。

在这里我定义了一个二元矩阵的相乘函数m1,以及一个在二元向量上的变换m2,然后利用reduce操作完成一个连乘操作得到Aⁿx,最后得到fib(n)。

9)准备参加ACM比赛的Python程序员:

 
def fib(n):
 lhm=[[0,1],[1,1]]
 rhm=[[0],[1]]
 em=[[1,0],[0,1]]
 #multiply two matrixes
 def matrix_mul(lhm,rhm):
  #initialize an empty matrix filled with zero
  result=[[0 for i in range(len(rhm[0]))] for j in range(len(rhm))]
  #multiply loop
  for i in range(len(lhm)):
   for j in range(len(rhm[0])):
    for k in range(len(rhm)):
     result[i][j]+=lhm[i][k]*rhm[k][j]
  return result
 
 def matrix_square(mat):
  return matrix_mul(mat,mat)
 #quick transform
 def fib_iter(mat,n):
  if not n:
   return em
  elif(n%2):
   return matrix_mul(mat,fib_iter(mat,n-1))
  else:
   return matrix_square(fib_iter(mat,n/2))
 return matrix_mul(fib_iter(lhm,n),rhm)[0][0]

ログイン後にコピー

说明:

看过上一个fib函数就比较容易理解这一个版本了,这个版本同样采用了二元变换的方式求fib(n)。不过区别在于这个版本的复杂度是lgn,而上一个版本则是线性的。

这个版本的不同之处在于,它定义了一个矩阵的快速求幂操作fib_iter,原理很简单,可以类比自然数的快速求幂方法,所以这里就不多说了。

PS:虽然说是ACM版本,不过说实话我从来没参加过那玩意,毕竟自己算法太水了,那玩意又太高端……只能在这里YY一下鸟~

python中,最基本的那种递归(如下fib1)效率太低了,只要n数字大了运算时间就会很长;而通过将计算的指保存到一个dict中,后面计算时直接拿来使用,这种方式成为备忘(memo),如下面的fib2函数所示,则会发现效率大大提高。

在n=10以内时,fib1和fab2运行时间都很短看不出差异,但当n=40时,就太明显了,fib1运行花了35秒,fab2运行只花费了0.00001秒。
n=40时,输出如下:

jay@jay-linux:~/workspace/python.git/py2014$ python fibonacci.py 
2014-10-16 16:28:35.176396
fib1(40)=102334155
2014-10-16 16:29:10.479953
fib2(40)=102334155
2014-10-16 16:29:10.480035
ログイン後にコピー

这两个计算Fibonacci数列的函数,如下:https://github.com/smilejay/python/blob/master/py2014/fibonacci.py

import datetime

def fib1(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib1(n - 1) + fib1(n - 2)
 
known = {0: 0, 1: 1}
 
def fib2(n):
  if n in known:
    return known[n]
 
  res = fib2(n - 1) + fib2(n - 2)
  known[n] = res
  return res

if __name__ == '__main__':
  n = 40
  print(datetime.datetime.now())
  print('fib1(%d)=%d' % (n, fib1(n)))
  print(datetime.datetime.now())
  print('fib2(%d)=%d' % (n, fib2(n)))
  print(datetime.datetime.now())

ログイン後にコピー

后记:

由于刚学习Python没多久,所以对其各种特性的掌握还不够熟练。与其说是我在用Python写程序,倒不如说我是在用C,C++,C#或是Scheme来写程序。至于传说中的Pythonic way,我现在还没有什么体会,毕竟还没用Python写过什么真正的程序。
Learning Python和Core Python都是不错的Python入门书籍,前者更适合没有编程基础的人阅读。
Python是最好的初学编程入门语言,没有之一。所以它可以取代Scheme成为MIT的计算机编程入门语言。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

See all articles