Python聚类算法之凝聚层次聚类实例分析
本文实例讲述了Python聚类算法之凝聚层次聚类。分享给大家供大家参考,具体如下:
凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并。对于这里的“最接近”,有下面三种定义。我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行:
单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离。
全链(MAX):定义簇的邻近度为不同两个簇的两个最远的点之间的距离。
组平均:定义簇的邻近度为取自两个不同簇的所有点对邻近度的平均值。
# scoding=utf-8 # Agglomerative Hierarchical Clustering(AHC) import pylab as pl from operator import itemgetter from collections import OrderedDict,Counter points = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")] # 初始时每个点指派为单独一簇 groups = [idx for idx in range(len(points))] # 计算每个点对之间的距离 disP2P = {} for idx1,point1 in enumerate(points): for idx2,point2 in enumerate(points): if (idx1 < idx2): distance = pow(abs(point1[0]-point2[0]),2) + pow(abs(point1[1]-point2[1]),2) disP2P[str(idx1)+"#"+str(idx2)] = distance # 按距离降序将各个点对排序 disP2P = OrderedDict(sorted(disP2P.iteritems(), key=itemgetter(1), reverse=True)) # 当前有的簇个数 groupNum = len(groups) # 过分合并会带入噪音点的影响,当簇数减为finalGroupNum时,停止合并 finalGroupNum = int(groupNum*0.1) while groupNum > finalGroupNum: # 选取下一个距离最近的点对 twopoins,distance = disP2P.popitem() pointA = int(twopoins.split('#')[0]) pointB = int(twopoins.split('#')[1]) pointAGroup = groups[pointA] pointBGroup = groups[pointB] # 当前距离最近两点若不在同一簇中,将点B所在的簇中的所有点合并到点A所在的簇中,此时当前簇数减1 if(pointAGroup != pointBGroup): for idx in range(len(groups)): if groups[idx] == pointBGroup: groups[idx] = pointAGroup groupNum -= 1 # 选取规模最大的3个簇,其他簇归为噪音点 wantGroupNum = 3 finalGroup = Counter(groups).most_common(wantGroupNum) finalGroup = [onecount[0] for onecount in finalGroup] dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup] # 打印规模最大的3个簇中的点 group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]] group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]] group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]] pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or') pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy') pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og') # 打印噪音点,黑色 pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok') pl.show()
运行效果截图如下:
希望本文所述对大家Python程序设计有所帮助。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









羽毛の鍵は、その漸進的な性質を理解することです。 PS自体は、勾配曲線を直接制御するオプションを提供しませんが、複数の羽毛、マッチングマスク、および細かい選択により、半径と勾配の柔らかさを柔軟に調整して、自然な遷移効果を実現できます。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

PSフェザーリングは、イメージエッジブラー効果であり、エッジエリアのピクセルの加重平均によって達成されます。羽の半径を設定すると、ぼやけの程度を制御でき、値が大きいほどぼやけます。半径の柔軟な調整は、画像とニーズに応じて効果を最適化できます。たとえば、キャラクターの写真を処理する際に詳細を維持するためにより小さな半径を使用し、より大きな半径を使用してアートを処理するときにかすんだ感覚を作成します。ただし、半径が大きすぎるとエッジの詳細を簡単に失う可能性があり、効果が小さすぎると明らかになりません。羽毛効果は画像解像度の影響を受け、画像の理解と効果の把握に従って調整する必要があります。

PSフェザーリングは、画像の詳細の喪失、色の飽和の減少、およびノイズの増加につながる可能性があります。影響を減らすために、小さな羽の半径を使用し、レイヤーをコピーしてから羽毛をコピーし、羽毛の前後に画質を慎重に比較することをお勧めします。さらに、フェザーリングはすべてのケースに適しておらず、マスクなどのツールが画像エッジの処理に適している場合があります。

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

MySQLのインストールの一般的な理由とソリューションの失敗:1。誤ったユーザー名またはパスワード、またはMySQLサービスが開始されない場合、ユーザー名とパスワードを確認してサービスを開始する必要があります。 2。ポートの競合では、MySQLリスニングポートを変更するか、ポート3306を占めるプログラムを閉じる必要があります。 3.依存関係ライブラリがありません。システムパッケージマネージャーを使用して、必要な依存関係ライブラリをインストールする必要があります。 4.許可が不十分な場合、インストーラーを実行するには、sudoまたは管理者の権利を使用する必要があります。 5.誤った構成ファイルでは、構成が正しいことを確認するには、my.cnf構成ファイルを確認する必要があります。着実に慎重に作業することによってのみ、MySQLをスムーズにインストールできます。
