Python中列表和元组的相关语句和方法讲解
列表(list):
首先,列表属于序列,那么序列类型可用如下内建函数——
list(iter):把可迭代对象转换为列表。
str(obj):把obj对象转换为字符串,即用字符串来表示这个对象。
tuple(iter):把一个可迭代对象转换为一个元组。
unicode(obj):把对象转换成Unicode字符串。
basestring():抽象工厂函数,其作用仅仅是为str和unicode函数提供父类,所以不能被实例化,也不能被调用。
enumerate(iter):接受一个可迭代对象作为参数,返回一个enumerate对象,该对象生成由iter每个元素的index值和item值组成的元组。
len(seq):返回seq的长度。
max(iter,key=None)、max(arg0,arg1...,key=None):返回iter或(arg0,arg1...)的最大值,如果指定了key,这个key必须是一个可以传给sort()方法的,用于比较的回调函数。
min(iter,key=None)、min(arg0,arg1...,key=None):返回iter或(arg0,arg1...)的最小值,如果指定了key,这个key必须是一个可以传给sort()方法的,用于比较的回调函数。
reversed(seq):接受一个序列作为参数,返回一个以逆序访问的迭代器。
sorted(iter,cmp=None,key=None,reverse=False):接受一个可迭代对象作为参数,返回一个有序的列表,可选参数cmp、key和reverse和list.sort()内建函数含义一样。
sum(seq,init=0):返回seq和可选参数init的总和,其效果等同于reduce(operator.add,seq,init)。
zip([it0,it1...]):返回一个列表,其第一个元素是it0、it1...这些元素的第一个元素组成的一个元组,其它元素依次类推。
列表就像一个线性容器,但是比C++的 lis t扩展多得多
列表里的元素可以是相同类型,也可以包含各种类型,比如列表里嵌套另一个列表
列表示例:
>>> L1 = [1,2,3] >>> type(L1) <class 'list'> >>> L1 = [1,'a',2,1.4] >>> L1 [1, 'a', 2, 1.4] >>> L1 = [ ['sub'],1,'n'] >>> L1 [['sub'], 1, 'n']
list的索引是也是从0开始,但也可以从后访问,L1[-1] 表示L1中的最后一个元素
>>> L1 [['sub'], 1, 'n'] >>> L1[0] ['sub'] >>> L1[-1] 'n'
对列表可以进行切片,切片的操作类似于对函数的调用,返回值一个新的列表
切片 L1[ x : y : z ] 是半开闭区间(z通常不用写),如L1[1:3] 返回的是一个从 L1[1] 开始到 L1[2] 结束的列表,不包含L1[3]
x 不写表示从头开始,y 不写表示直到列表结束,z 用于表示步长, 默认是1, 可以认为是在这个区间里每 z 个元素取一个(取第一个),可以是负数,表示从后到前遍历
>>> L1 = [1,2,3,4,5,6] >>> L1[1:3] [2, 3] >>> L1[:3] [1, 2, 3] >>> L1[1:] [2, 3, 4, 5, 6] >>> L1[-3:-1] [4, 5] >>> L2 = L1[:] >>> L2 [1, 2, 3, 4, 5, 6] >>> L1[::2] [1, 3, 5] >>> L1[::-1] [6, 5, 4, 3, 2, 1]
列表可以做加法,做乘法,字符串也可以看做一个字符的列表
>>> L1 = [1,2] >>> L2 = [3,4] >>> L1 + L2 [1, 2, 3, 4] >>> 5 * L1 [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
in语句,判断一个对象是否在一个字符串/列表/元组里
not 语句表示对后面的否定
len 可以检测字符串/列表/元祖/字典的元素个数
max 可以返回最大元素,min 返回最小元素
>>> L1 [1, 2, 3, 4, 2] >>> 3 in L1 True >>> 5 in L1 False >>> 3 not in L1 False >>> 5 not in L1 True >>> len(L1) 5 >>> max(L1) 4 >>> min(L1) 1
操作:
>>> #赋值 >>> L1[1] = 5 >>> L1 [1, 5, 3, 4, 2] >>> #删除 >>> del L1[1] >>> L1 [1, 3, 4, 2] >>> #分片赋值 >>> L1[2:] = [6,7,8] >>> L1 [1, 3, 6, 7, 8] >>> L1[1:3] = [] >>> L1 [1, 7, 8]
list 的函数:
append( x ) 是将 x 作为一个元素添加到列表的末尾,即使 x 是一个列表
>>> L1 [1, 2, 7, 8] >>> L1.append(3) >>> L1 [1, 2, 7, 8, 3] >>> L1.append([4,5]) >>> L1 [1, 2, 7, 8, 3, [4, 5]] >>> 4 in L1 False
count( x) 统计 x 在列表中出现的次数
>>> L1 = [1, 2, 7, 8] >>> L1.count(2) 1 >>> L1.count(3) 0
extend( x ) 将x 作为一个列表与原列表合并,添加到末尾。若不是列表,则编译器尝试将 x 转换为列表然后执行操作,不成功就会报错
>>> L1 [1, 2, 7, 8] >>> L1.extend([4,5]) >>> L1 [1, 2, 7, 8, 4, 5] >>> 4 in L1 True
index ( x ) 返回 x 在列表中的坐标,若 x 不在列表中会出错
>>> L1.index(2) 1
insert( i , x) 在位置i 插入元素x
>>> L1 [1, 2, 7, 8, 4, 5] >>> L1.insert(0,'a') >>> L1 ['a', 1, 2, 7, 8, 4, 5] >>> L1.insert(-1,'b') >>> L1 ['a', 1, 2, 7, 8, 4, 'b', 5]
pop( i ) 删除位置 i 的元素并将它返回,默认可以不写 i ,删除最后一个元素,不存在会出错
>>> L1 = [1, 2, 7, 8] >>> L1.pop(1) 2 >>> L1 [1, 7, 8] >>> L1.pop() 8 >>> L1 [1, 7]
remove( x ) 移除在 列表中 x 的第一个匹配项,x 不存在会出错
>>> L1.remove(2) >>> L1 [1, 7, 8]
reverse() 将列表逆序
>>> L1 = [1, 2, 7, 8] >>> L1.reverse() >>> L1 [8, 7, 2, 1]
sort 将原列表排序,返回None,有两个可选参数,key 和 reverse,默认为升序排列
>>> L1 [8, 7, 2, 1] >>> L1.sort() >>> L1 [1, 2, 7, 8] >>> L1.sort(reverse = True) >>> L1 [8, 7, 2, 1] >>> L1 = ['a','ccc','abcd','bc','cd','abc'] >>> L1.sort(key = len) >>> L1 ['a', 'bc', 'cd', 'ccc', 'abc', 'abcd']
元组(tuple)
元组也属于序列,但元组为不可修改的列表。所以元组没有以上序列通用方法可用!
一个元素的元组表示为 ( 1 , )
>>> x = (1,) >>> type(x) <class 'tuple'> >>> x = (1) >>> type(x) <class 'int'>
元组可转换成列表,反之亦然。
内建的 tuple() 函数接受一个列表参数,并返回一个包含同样元素的元组,而 list() 函数接受一个元组参数并返回一个列表。
从效果上看, tuple() 冻结列表,而 list() 融化元组。
>>> x = [1,2,4,3,1] >>> y = (1,2,4,3,1) >>> type(x) <class 'list'> >>> type(y) <class 'tuple'> >>> z = tuple(x) >>> z (1, 2, 4, 3, 1) >>> z = list(y) >>> z [1, 2, 4, 3, 1]
可以用列表 或 元组 进行一次多赋值:
>>> L1 = (1,2,4) >>> (x, y, z) = L1 >>> x 1 >>> y 2 >>> z 4 >>> L1 = [1,2,4] >>> (x,y,z) = L1 >>> x 1 >>> y 2 >>> z 4
[] ,和 () 在布尔值中表示 False

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

hadidb:軽量で高レベルのスケーラブルなPythonデータベースHadIDB(HadIDB)は、Pythonで記述された軽量データベースで、スケーラビリティが高くなっています。 PIPインストールを使用してHADIDBをインストールする:PIPINSTALLHADIDBユーザー管理CREATEユーザー:CREATEUSER()メソッド新しいユーザーを作成します。 Authentication()メソッドは、ユーザーのIDを認証します。 fromhadidb.operationimportuseruser_obj = user( "admin"、 "admin")user_obj。

MySQLワークベンチは、構成が正しい場合、MariadBに接続できます。最初にコネクタタイプとして「mariadb」を選択します。接続構成では、ホスト、ポート、ユーザー、パスワード、およびデータベースを正しく設定します。接続をテストするときは、ユーザー名とパスワードが正しいかどうか、ポート番号が正しいかどうか、ファイアウォールが接続を許可するかどうか、データベースが存在するかどうか、MariadBサービスが開始されていることを確認してください。高度な使用法では、接続プーリングテクノロジーを使用してパフォーマンスを最適化します。一般的なエラーには、不十分な権限、ネットワーク接続の問題などが含まれます。エラーをデバッグするときは、エラー情報を慎重に分析し、デバッグツールを使用します。ネットワーク構成を最適化すると、パフォーマンスが向上する可能性があります

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

MySQL接続は、次の理由が原因である可能性があります。MySQLサービスは開始されず、ファイアウォールは接続をインターセプトし、ポート番号が間違っています。ユーザー名またはパスワードが間違っています。My.cnfのリスニングアドレスは不適切に構成されています。トラブルシューティング手順には以下が含まれます。 2.ファイアウォール設定を調整して、MySQLがポート3306をリッスンできるようにします。 3.ポート番号が実際のポート番号と一致していることを確認します。 4.ユーザー名とパスワードが正しいかどうかを確認します。 5. my.cnfのバインドアドレス設定が正しいことを確認してください。

MySQLは、基本的なデータストレージと管理のためにネットワーク接続なしで実行できます。ただし、他のシステムとのやり取り、リモートアクセス、または複製やクラスタリングなどの高度な機能を使用するには、ネットワーク接続が必要です。さらに、セキュリティ対策(ファイアウォールなど)、パフォーマンスの最適化(適切なネットワーク接続を選択)、およびデータバックアップは、インターネットに接続するために重要です。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

データの専門家として、さまざまなソースから大量のデータを処理する必要があります。これは、データ管理と分析に課題をもたらす可能性があります。幸いなことに、AWS GlueとAmazon Athenaの2つのAWSサービスが役立ちます。
