Python3.2中Print函数用法实例详解
本文实例讲述了Python3.2中Print函数用法。分享给大家供大家参考。具体分析如下:
1. 输出字符串
>>> strHello = 'Hello World' >>> print (strHello) Hello World
2. 格式化输出整数
支持参数格式化,与C语言的printf类似
>>> strHello = "the length of (%s) is %d" %('Hello World',len('Hello World')) >>> print (strHello) the length of (Hello World) is 11
3. 格式化输出16进制,十进制,八进制整数
#%x --- hex 十六进制
#%d --- dec 十进制
#%o --- oct 八进制
>>> nHex = 0xFF >>> print("nHex = %x,nDec = %d,nOct = %o" %(nHex,nHex,nHex)) nHex = ff,nDec = 255,nOct = 377
4.格式化输出浮点数(float)
import math >>> print('PI=%f'%math.pi) PI=3.141593 >>> print ("PI = %10.3f" % math.pi) PI = 3.142 >>> print ("PI = %-10.3f" % math.pi) PI = 3.142 >>> print ("PI = %06d" % int(math.pi)) PI = 000003
5. 格式化输出浮点数(float)
>>> precise = 3 >>> print ("%.3s " % ("python")) pyt >>> precise = 4 >>> print ("%.*s" % (4,"python")) pyth >>> print ("%10.3s " % ("python")) pyt
6.输出列表(List)
输出列表
>>> lst = [1,2,3,4,'python'] >>> print (lst) [1, 2, 3, 4, 'python']
输出字典
>>> d = {1:'A',2:'B',3:'C',4:'D'} >>> print(d) {1: 'A', 2: 'B', 3: 'C', 4: 'D'}
7. 自动换行
print 会自动在行末加上回车,如果不需回车,只需在print语句的结尾添加一个逗号”,“,就可以改变它的行为。
>>> for i in range(0,6): print (i,) 0 1 2 3 4 5
或直接使用下面的函数进行输出:
>>> import sys >>> sys.stdout.write('Hello World') Hello World
希望本文所述对大家的Python程序设计有所帮助。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

データサイエンスと処理のお気に入りであるPythonは、高性能コンピューティングのための豊富なエコシステムを提供します。ただし、Pythonの並列プログラミングは、独自の課題を提示します。このチュートリアルでは、これらの課題を調査し、グローバルな承認に焦点を当てています

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

このチュートリアルでは、Python 3にカスタムパイプラインデータ構造を作成し、機能を強化するためにクラスとオペレーターのオーバーロードを活用していることを示しています。 パイプラインの柔軟性は、一連の機能をデータセットに適用する能力にあります。

Pythonオブジェクトのシリアル化と脱介入は、非自明のプログラムの重要な側面です。 Pythonファイルに何かを保存すると、構成ファイルを読み取る場合、またはHTTPリクエストに応答する場合、オブジェクトシリアル化と脱滑り化を行います。 ある意味では、シリアル化と脱派化は、世界で最も退屈なものです。これらすべての形式とプロトコルを気にするのは誰ですか? Pythonオブジェクトを維持またはストリーミングし、後で完全に取得したいと考えています。 これは、概念レベルで世界を見るのに最適な方法です。ただし、実用的なレベルでは、選択したシリアル化スキーム、形式、またはプロトコルは、プログラムの速度、セキュリティ、メンテナンスの自由、およびその他の側面を決定する場合があります。

Pythonの統計モジュールは、強力なデータ統計分析機能を提供して、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるようにします。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。 このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記しない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、平均()関数の計算をサポートします。 浮動小数点数も使用できます。 ランダムをインポートします インポート統計 fractiから
